Metamath Proof Explorer


Theorem climfveqmpt3

Description: Two functions that are eventually equal to one another have the same limit. TODO: this is more general than climfveqmpt and should replace it. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses climfveqmpt3.k 𝑘 𝜑
climfveqmpt3.m ( 𝜑𝑀 ∈ ℤ )
climfveqmpt3.z 𝑍 = ( ℤ𝑀 )
climfveqmpt3.a ( 𝜑𝐴𝑉 )
climfveqmpt3.c ( 𝜑𝐶𝑊 )
climfveqmpt3.i ( 𝜑𝑍𝐴 )
climfveqmpt3.s ( 𝜑𝑍𝐶 )
climfveqmpt3.b ( ( 𝜑𝑘𝑍 ) → 𝐵𝑈 )
climfveqmpt3.d ( ( 𝜑𝑘𝑍 ) → 𝐵 = 𝐷 )
Assertion climfveqmpt3 ( 𝜑 → ( ⇝ ‘ ( 𝑘𝐴𝐵 ) ) = ( ⇝ ‘ ( 𝑘𝐶𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 climfveqmpt3.k 𝑘 𝜑
2 climfveqmpt3.m ( 𝜑𝑀 ∈ ℤ )
3 climfveqmpt3.z 𝑍 = ( ℤ𝑀 )
4 climfveqmpt3.a ( 𝜑𝐴𝑉 )
5 climfveqmpt3.c ( 𝜑𝐶𝑊 )
6 climfveqmpt3.i ( 𝜑𝑍𝐴 )
7 climfveqmpt3.s ( 𝜑𝑍𝐶 )
8 climfveqmpt3.b ( ( 𝜑𝑘𝑍 ) → 𝐵𝑈 )
9 climfveqmpt3.d ( ( 𝜑𝑘𝑍 ) → 𝐵 = 𝐷 )
10 4 mptexd ( 𝜑 → ( 𝑘𝐴𝐵 ) ∈ V )
11 5 mptexd ( 𝜑 → ( 𝑘𝐶𝐷 ) ∈ V )
12 nfv 𝑘 𝑗𝑍
13 1 12 nfan 𝑘 ( 𝜑𝑗𝑍 )
14 nfcv 𝑘 𝑗
15 14 nfcsb1 𝑘 𝑗 / 𝑘 𝐵
16 14 nfcsb1 𝑘 𝑗 / 𝑘 𝐷
17 15 16 nfeq 𝑘 𝑗 / 𝑘 𝐵 = 𝑗 / 𝑘 𝐷
18 13 17 nfim 𝑘 ( ( 𝜑𝑗𝑍 ) → 𝑗 / 𝑘 𝐵 = 𝑗 / 𝑘 𝐷 )
19 eleq1w ( 𝑘 = 𝑗 → ( 𝑘𝑍𝑗𝑍 ) )
20 19 anbi2d ( 𝑘 = 𝑗 → ( ( 𝜑𝑘𝑍 ) ↔ ( 𝜑𝑗𝑍 ) ) )
21 csbeq1a ( 𝑘 = 𝑗𝐵 = 𝑗 / 𝑘 𝐵 )
22 csbeq1a ( 𝑘 = 𝑗𝐷 = 𝑗 / 𝑘 𝐷 )
23 21 22 eqeq12d ( 𝑘 = 𝑗 → ( 𝐵 = 𝐷 𝑗 / 𝑘 𝐵 = 𝑗 / 𝑘 𝐷 ) )
24 20 23 imbi12d ( 𝑘 = 𝑗 → ( ( ( 𝜑𝑘𝑍 ) → 𝐵 = 𝐷 ) ↔ ( ( 𝜑𝑗𝑍 ) → 𝑗 / 𝑘 𝐵 = 𝑗 / 𝑘 𝐷 ) ) )
25 18 24 9 chvarfv ( ( 𝜑𝑗𝑍 ) → 𝑗 / 𝑘 𝐵 = 𝑗 / 𝑘 𝐷 )
26 6 adantr ( ( 𝜑𝑗𝑍 ) → 𝑍𝐴 )
27 simpr ( ( 𝜑𝑗𝑍 ) → 𝑗𝑍 )
28 26 27 sseldd ( ( 𝜑𝑗𝑍 ) → 𝑗𝐴 )
29 nfcv 𝑘 𝑈
30 15 29 nfel 𝑘 𝑗 / 𝑘 𝐵𝑈
31 13 30 nfim 𝑘 ( ( 𝜑𝑗𝑍 ) → 𝑗 / 𝑘 𝐵𝑈 )
32 21 eleq1d ( 𝑘 = 𝑗 → ( 𝐵𝑈 𝑗 / 𝑘 𝐵𝑈 ) )
33 20 32 imbi12d ( 𝑘 = 𝑗 → ( ( ( 𝜑𝑘𝑍 ) → 𝐵𝑈 ) ↔ ( ( 𝜑𝑗𝑍 ) → 𝑗 / 𝑘 𝐵𝑈 ) ) )
34 31 33 8 chvarfv ( ( 𝜑𝑗𝑍 ) → 𝑗 / 𝑘 𝐵𝑈 )
35 eqid ( 𝑘𝐴𝐵 ) = ( 𝑘𝐴𝐵 )
36 14 15 21 35 fvmptf ( ( 𝑗𝐴 𝑗 / 𝑘 𝐵𝑈 ) → ( ( 𝑘𝐴𝐵 ) ‘ 𝑗 ) = 𝑗 / 𝑘 𝐵 )
37 28 34 36 syl2anc ( ( 𝜑𝑗𝑍 ) → ( ( 𝑘𝐴𝐵 ) ‘ 𝑗 ) = 𝑗 / 𝑘 𝐵 )
38 7 adantr ( ( 𝜑𝑗𝑍 ) → 𝑍𝐶 )
39 38 27 sseldd ( ( 𝜑𝑗𝑍 ) → 𝑗𝐶 )
40 25 34 eqeltrrd ( ( 𝜑𝑗𝑍 ) → 𝑗 / 𝑘 𝐷𝑈 )
41 eqid ( 𝑘𝐶𝐷 ) = ( 𝑘𝐶𝐷 )
42 14 16 22 41 fvmptf ( ( 𝑗𝐶 𝑗 / 𝑘 𝐷𝑈 ) → ( ( 𝑘𝐶𝐷 ) ‘ 𝑗 ) = 𝑗 / 𝑘 𝐷 )
43 39 40 42 syl2anc ( ( 𝜑𝑗𝑍 ) → ( ( 𝑘𝐶𝐷 ) ‘ 𝑗 ) = 𝑗 / 𝑘 𝐷 )
44 25 37 43 3eqtr4d ( ( 𝜑𝑗𝑍 ) → ( ( 𝑘𝐴𝐵 ) ‘ 𝑗 ) = ( ( 𝑘𝐶𝐷 ) ‘ 𝑗 ) )
45 3 10 11 2 44 climfveq ( 𝜑 → ( ⇝ ‘ ( 𝑘𝐴𝐵 ) ) = ( ⇝ ‘ ( 𝑘𝐶𝐷 ) ) )