Step |
Hyp |
Ref |
Expression |
1 |
|
climfveqmpt3.k |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
climfveqmpt3.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
climfveqmpt3.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
4 |
|
climfveqmpt3.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
5 |
|
climfveqmpt3.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) |
6 |
|
climfveqmpt3.i |
⊢ ( 𝜑 → 𝑍 ⊆ 𝐴 ) |
7 |
|
climfveqmpt3.s |
⊢ ( 𝜑 → 𝑍 ⊆ 𝐶 ) |
8 |
|
climfveqmpt3.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ 𝑈 ) |
9 |
|
climfveqmpt3.d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 = 𝐷 ) |
10 |
4
|
mptexd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) |
11 |
5
|
mptexd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐶 ↦ 𝐷 ) ∈ V ) |
12 |
|
nfv |
⊢ Ⅎ 𝑘 𝑗 ∈ 𝑍 |
13 |
1 12
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) |
14 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑗 |
15 |
14
|
nfcsb1 |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 |
16 |
14
|
nfcsb1 |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐷 |
17 |
15 16
|
nfeq |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐷 |
18 |
13 17
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐷 ) |
19 |
|
eleq1w |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍 ) ) |
20 |
19
|
anbi2d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ↔ ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ) ) |
21 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑗 → 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
22 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑗 → 𝐷 = ⦋ 𝑗 / 𝑘 ⦌ 𝐷 ) |
23 |
21 22
|
eqeq12d |
⊢ ( 𝑘 = 𝑗 → ( 𝐵 = 𝐷 ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐷 ) ) |
24 |
20 23
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 = 𝐷 ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐷 ) ) ) |
25 |
18 24 9
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐷 ) |
26 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑍 ⊆ 𝐴 ) |
27 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ 𝑍 ) |
28 |
26 27
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ 𝐴 ) |
29 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑈 |
30 |
15 29
|
nfel |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ 𝑈 |
31 |
13 30
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ 𝑈 ) |
32 |
21
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( 𝐵 ∈ 𝑈 ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ 𝑈 ) ) |
33 |
20 32
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ 𝑈 ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ 𝑈 ) ) ) |
34 |
31 33 8
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ 𝑈 ) |
35 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) |
36 |
14 15 21 35
|
fvmptf |
⊢ ( ( 𝑗 ∈ 𝐴 ∧ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ 𝑈 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑗 ) = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
37 |
28 34 36
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑗 ) = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
38 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑍 ⊆ 𝐶 ) |
39 |
38 27
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ 𝐶 ) |
40 |
25 34
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐷 ∈ 𝑈 ) |
41 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐶 ↦ 𝐷 ) = ( 𝑘 ∈ 𝐶 ↦ 𝐷 ) |
42 |
14 16 22 41
|
fvmptf |
⊢ ( ( 𝑗 ∈ 𝐶 ∧ ⦋ 𝑗 / 𝑘 ⦌ 𝐷 ∈ 𝑈 ) → ( ( 𝑘 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑗 ) = ⦋ 𝑗 / 𝑘 ⦌ 𝐷 ) |
43 |
39 40 42
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑗 ) = ⦋ 𝑗 / 𝑘 ⦌ 𝐷 ) |
44 |
25 37 43
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑗 ) = ( ( 𝑘 ∈ 𝐶 ↦ 𝐷 ) ‘ 𝑗 ) ) |
45 |
3 10 11 2 44
|
climfveq |
⊢ ( 𝜑 → ( ⇝ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = ( ⇝ ‘ ( 𝑘 ∈ 𝐶 ↦ 𝐷 ) ) ) |