| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climshft2.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
climshft2.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 3 |
|
climrecl.3 |
⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) |
| 4 |
|
climrecl.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 5 |
|
climge0.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 6 |
1
|
uzsup |
⊢ ( 𝑀 ∈ ℤ → sup ( 𝑍 , ℝ* , < ) = +∞ ) |
| 7 |
2 6
|
syl |
⊢ ( 𝜑 → sup ( 𝑍 , ℝ* , < ) = +∞ ) |
| 8 |
|
climrel |
⊢ Rel ⇝ |
| 9 |
8
|
brrelex1i |
⊢ ( 𝐹 ⇝ 𝐴 → 𝐹 ∈ V ) |
| 10 |
3 9
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 11 |
|
eqid |
⊢ ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) = ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) |
| 12 |
1 11
|
climmpt |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ V ) → ( 𝐹 ⇝ 𝐴 ↔ ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ⇝ 𝐴 ) ) |
| 13 |
2 10 12
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ⇝ 𝐴 ↔ ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ⇝ 𝐴 ) ) |
| 14 |
3 13
|
mpbid |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ⇝ 𝐴 ) |
| 15 |
4
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 16 |
15
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) : 𝑍 ⟶ ℂ ) |
| 17 |
1 2 16
|
rlimclim |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ⇝𝑟 𝐴 ↔ ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ⇝ 𝐴 ) ) |
| 18 |
14 17
|
mpbird |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ⇝𝑟 𝐴 ) |
| 19 |
7 18 4 5
|
rlimge0 |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |