Metamath Proof Explorer


Theorem climge0

Description: A nonnegative sequence converges to a nonnegative number. (Contributed by NM, 11-Sep-2005) (Proof shortened by Mario Carneiro, 10-May-2016)

Ref Expression
Hypotheses climshft2.1 𝑍 = ( ℤ𝑀 )
climshft2.2 ( 𝜑𝑀 ∈ ℤ )
climrecl.3 ( 𝜑𝐹𝐴 )
climrecl.4 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℝ )
climge0.5 ( ( 𝜑𝑘𝑍 ) → 0 ≤ ( 𝐹𝑘 ) )
Assertion climge0 ( 𝜑 → 0 ≤ 𝐴 )

Proof

Step Hyp Ref Expression
1 climshft2.1 𝑍 = ( ℤ𝑀 )
2 climshft2.2 ( 𝜑𝑀 ∈ ℤ )
3 climrecl.3 ( 𝜑𝐹𝐴 )
4 climrecl.4 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℝ )
5 climge0.5 ( ( 𝜑𝑘𝑍 ) → 0 ≤ ( 𝐹𝑘 ) )
6 1 uzsup ( 𝑀 ∈ ℤ → sup ( 𝑍 , ℝ* , < ) = +∞ )
7 2 6 syl ( 𝜑 → sup ( 𝑍 , ℝ* , < ) = +∞ )
8 climrel Rel ⇝
9 8 brrelex1i ( 𝐹𝐴𝐹 ∈ V )
10 3 9 syl ( 𝜑𝐹 ∈ V )
11 eqid ( 𝑘𝑍 ↦ ( 𝐹𝑘 ) ) = ( 𝑘𝑍 ↦ ( 𝐹𝑘 ) )
12 1 11 climmpt ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ V ) → ( 𝐹𝐴 ↔ ( 𝑘𝑍 ↦ ( 𝐹𝑘 ) ) ⇝ 𝐴 ) )
13 2 10 12 syl2anc ( 𝜑 → ( 𝐹𝐴 ↔ ( 𝑘𝑍 ↦ ( 𝐹𝑘 ) ) ⇝ 𝐴 ) )
14 3 13 mpbid ( 𝜑 → ( 𝑘𝑍 ↦ ( 𝐹𝑘 ) ) ⇝ 𝐴 )
15 4 recnd ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℂ )
16 15 fmpttd ( 𝜑 → ( 𝑘𝑍 ↦ ( 𝐹𝑘 ) ) : 𝑍 ⟶ ℂ )
17 1 2 16 rlimclim ( 𝜑 → ( ( 𝑘𝑍 ↦ ( 𝐹𝑘 ) ) ⇝𝑟 𝐴 ↔ ( 𝑘𝑍 ↦ ( 𝐹𝑘 ) ) ⇝ 𝐴 ) )
18 14 17 mpbird ( 𝜑 → ( 𝑘𝑍 ↦ ( 𝐹𝑘 ) ) ⇝𝑟 𝐴 )
19 7 18 4 5 rlimge0 ( 𝜑 → 0 ≤ 𝐴 )