Step |
Hyp |
Ref |
Expression |
1 |
|
climi.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
climi.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
climi.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
4 |
|
climi.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐵 ) |
5 |
|
climi.5 |
⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) |
6 |
|
breq2 |
⊢ ( 𝑥 = 𝐶 → ( ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ↔ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝐶 ) ) |
7 |
6
|
anbi2d |
⊢ ( 𝑥 = 𝐶 → ( ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ↔ ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝐶 ) ) ) |
8 |
7
|
rexralbidv |
⊢ ( 𝑥 = 𝐶 → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝐶 ) ) ) |
9 |
|
climrel |
⊢ Rel ⇝ |
10 |
9
|
brrelex1i |
⊢ ( 𝐹 ⇝ 𝐴 → 𝐹 ∈ V ) |
11 |
5 10
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
12 |
1 2 11 4
|
clim2 |
⊢ ( 𝜑 → ( 𝐹 ⇝ 𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) ) ) |
13 |
5 12
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) ) |
14 |
13
|
simprd |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) |
15 |
8 14 3
|
rspcdva |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝐶 ) ) |