Metamath Proof Explorer


Theorem climi

Description: Convergence of a sequence of complex numbers. (Contributed by NM, 11-Jan-2007) (Revised by Mario Carneiro, 31-Jan-2014)

Ref Expression
Hypotheses climi.1 𝑍 = ( ℤ𝑀 )
climi.2 ( 𝜑𝑀 ∈ ℤ )
climi.3 ( 𝜑𝐶 ∈ ℝ+ )
climi.4 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐵 )
climi.5 ( 𝜑𝐹𝐴 )
Assertion climi ( 𝜑 → ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝐶 ) )

Proof

Step Hyp Ref Expression
1 climi.1 𝑍 = ( ℤ𝑀 )
2 climi.2 ( 𝜑𝑀 ∈ ℤ )
3 climi.3 ( 𝜑𝐶 ∈ ℝ+ )
4 climi.4 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐵 )
5 climi.5 ( 𝜑𝐹𝐴 )
6 breq2 ( 𝑥 = 𝐶 → ( ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ↔ ( abs ‘ ( 𝐵𝐴 ) ) < 𝐶 ) )
7 6 anbi2d ( 𝑥 = 𝐶 → ( ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) ↔ ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝐶 ) ) )
8 7 rexralbidv ( 𝑥 = 𝐶 → ( ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) ↔ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝐶 ) ) )
9 climrel Rel ⇝
10 9 brrelex1i ( 𝐹𝐴𝐹 ∈ V )
11 5 10 syl ( 𝜑𝐹 ∈ V )
12 1 2 11 4 clim2 ( 𝜑 → ( 𝐹𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) ) ) )
13 5 12 mpbid ( 𝜑 → ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) ) )
14 13 simprd ( 𝜑 → ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) )
15 8 14 3 rspcdva ( 𝜑 → ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝐶 ) )