Step |
Hyp |
Ref |
Expression |
1 |
|
climi.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
climi.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
climi.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
4 |
|
climi.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐵 ) |
5 |
|
climi0.5 |
⊢ ( 𝜑 → 𝐹 ⇝ 0 ) |
6 |
1 2 3 4 5
|
climi |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 0 ) ) < 𝐶 ) ) |
7 |
|
subid1 |
⊢ ( 𝐵 ∈ ℂ → ( 𝐵 − 0 ) = 𝐵 ) |
8 |
7
|
fveq2d |
⊢ ( 𝐵 ∈ ℂ → ( abs ‘ ( 𝐵 − 0 ) ) = ( abs ‘ 𝐵 ) ) |
9 |
8
|
breq1d |
⊢ ( 𝐵 ∈ ℂ → ( ( abs ‘ ( 𝐵 − 0 ) ) < 𝐶 ↔ ( abs ‘ 𝐵 ) < 𝐶 ) ) |
10 |
9
|
biimpa |
⊢ ( ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 0 ) ) < 𝐶 ) → ( abs ‘ 𝐵 ) < 𝐶 ) |
11 |
10
|
ralimi |
⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 0 ) ) < 𝐶 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ 𝐵 ) < 𝐶 ) |
12 |
11
|
reximi |
⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 0 ) ) < 𝐶 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ 𝐵 ) < 𝐶 ) |
13 |
6 12
|
syl |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ 𝐵 ) < 𝐶 ) |