| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							climi.1 | 
							⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 )  | 
						
						
							| 2 | 
							
								
							 | 
							climi.2 | 
							⊢ ( 𝜑  →  𝑀  ∈  ℤ )  | 
						
						
							| 3 | 
							
								
							 | 
							climi.3 | 
							⊢ ( 𝜑  →  𝐶  ∈  ℝ+ )  | 
						
						
							| 4 | 
							
								
							 | 
							climi.4 | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  =  𝐵 )  | 
						
						
							| 5 | 
							
								
							 | 
							climi0.5 | 
							⊢ ( 𝜑  →  𝐹  ⇝  0 )  | 
						
						
							| 6 | 
							
								1 2 3 4 5
							 | 
							climi | 
							⊢ ( 𝜑  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐵  ∈  ℂ  ∧  ( abs ‘ ( 𝐵  −  0 ) )  <  𝐶 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							subid1 | 
							⊢ ( 𝐵  ∈  ℂ  →  ( 𝐵  −  0 )  =  𝐵 )  | 
						
						
							| 8 | 
							
								7
							 | 
							fveq2d | 
							⊢ ( 𝐵  ∈  ℂ  →  ( abs ‘ ( 𝐵  −  0 ) )  =  ( abs ‘ 𝐵 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							breq1d | 
							⊢ ( 𝐵  ∈  ℂ  →  ( ( abs ‘ ( 𝐵  −  0 ) )  <  𝐶  ↔  ( abs ‘ 𝐵 )  <  𝐶 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							biimpa | 
							⊢ ( ( 𝐵  ∈  ℂ  ∧  ( abs ‘ ( 𝐵  −  0 ) )  <  𝐶 )  →  ( abs ‘ 𝐵 )  <  𝐶 )  | 
						
						
							| 11 | 
							
								10
							 | 
							ralimi | 
							⊢ ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐵  ∈  ℂ  ∧  ( abs ‘ ( 𝐵  −  0 ) )  <  𝐶 )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ 𝐵 )  <  𝐶 )  | 
						
						
							| 12 | 
							
								11
							 | 
							reximi | 
							⊢ ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐵  ∈  ℂ  ∧  ( abs ‘ ( 𝐵  −  0 ) )  <  𝐶 )  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ 𝐵 )  <  𝐶 )  | 
						
						
							| 13 | 
							
								6 12
							 | 
							syl | 
							⊢ ( 𝜑  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ 𝐵 )  <  𝐶 )  |