Metamath Proof Explorer


Theorem climi0

Description: Convergence of a sequence of complex numbers to zero. (Contributed by NM, 11-Jan-2007) (Revised by Mario Carneiro, 31-Jan-2014)

Ref Expression
Hypotheses climi.1 𝑍 = ( ℤ𝑀 )
climi.2 ( 𝜑𝑀 ∈ ℤ )
climi.3 ( 𝜑𝐶 ∈ ℝ+ )
climi.4 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐵 )
climi0.5 ( 𝜑𝐹 ⇝ 0 )
Assertion climi0 ( 𝜑 → ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ 𝐵 ) < 𝐶 )

Proof

Step Hyp Ref Expression
1 climi.1 𝑍 = ( ℤ𝑀 )
2 climi.2 ( 𝜑𝑀 ∈ ℤ )
3 climi.3 ( 𝜑𝐶 ∈ ℝ+ )
4 climi.4 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐵 )
5 climi0.5 ( 𝜑𝐹 ⇝ 0 )
6 1 2 3 4 5 climi ( 𝜑 → ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 0 ) ) < 𝐶 ) )
7 subid1 ( 𝐵 ∈ ℂ → ( 𝐵 − 0 ) = 𝐵 )
8 7 fveq2d ( 𝐵 ∈ ℂ → ( abs ‘ ( 𝐵 − 0 ) ) = ( abs ‘ 𝐵 ) )
9 8 breq1d ( 𝐵 ∈ ℂ → ( ( abs ‘ ( 𝐵 − 0 ) ) < 𝐶 ↔ ( abs ‘ 𝐵 ) < 𝐶 ) )
10 9 biimpa ( ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 0 ) ) < 𝐶 ) → ( abs ‘ 𝐵 ) < 𝐶 )
11 10 ralimi ( ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 0 ) ) < 𝐶 ) → ∀ 𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ 𝐵 ) < 𝐶 )
12 11 reximi ( ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 0 ) ) < 𝐶 ) → ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ 𝐵 ) < 𝐶 )
13 6 12 syl ( 𝜑 → ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ 𝐵 ) < 𝐶 )