Step |
Hyp |
Ref |
Expression |
1 |
|
climi.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
climi.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
climi.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
4 |
|
climi.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐵 ) |
5 |
|
climi.5 |
⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) |
6 |
1 2 3 4 5
|
climi |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝐶 ) ) |
7 |
|
simpr |
⊢ ( ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝐶 ) → ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝐶 ) |
8 |
7
|
ralimi |
⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝐶 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝐶 ) |
9 |
8
|
reximi |
⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝐶 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝐶 ) |
10 |
6 9
|
syl |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝐶 ) |