Metamath Proof Explorer


Theorem climi2

Description: Convergence of a sequence of complex numbers. (Contributed by NM, 11-Jan-2007) (Revised by Mario Carneiro, 31-Jan-2014)

Ref Expression
Hypotheses climi.1 𝑍 = ( ℤ𝑀 )
climi.2 ( 𝜑𝑀 ∈ ℤ )
climi.3 ( 𝜑𝐶 ∈ ℝ+ )
climi.4 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐵 )
climi.5 ( 𝜑𝐹𝐴 )
Assertion climi2 ( 𝜑 → ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ ( 𝐵𝐴 ) ) < 𝐶 )

Proof

Step Hyp Ref Expression
1 climi.1 𝑍 = ( ℤ𝑀 )
2 climi.2 ( 𝜑𝑀 ∈ ℤ )
3 climi.3 ( 𝜑𝐶 ∈ ℝ+ )
4 climi.4 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐵 )
5 climi.5 ( 𝜑𝐹𝐴 )
6 1 2 3 4 5 climi ( 𝜑 → ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝐶 ) )
7 simpr ( ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝐶 ) → ( abs ‘ ( 𝐵𝐴 ) ) < 𝐶 )
8 7 ralimi ( ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝐶 ) → ∀ 𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ ( 𝐵𝐴 ) ) < 𝐶 )
9 8 reximi ( ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝐶 ) → ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ ( 𝐵𝐴 ) ) < 𝐶 )
10 6 9 syl ( 𝜑 → ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ ( 𝐵𝐴 ) ) < 𝐶 )