Step |
Hyp |
Ref |
Expression |
1 |
|
climinf.3 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
climinf.4 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
climinf.5 |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ ) |
4 |
|
climinf.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
5 |
|
climinf.7 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) |
6 |
3
|
frnd |
⊢ ( 𝜑 → ran 𝐹 ⊆ ℝ ) |
7 |
3
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝑍 ) |
8 |
|
uzid |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
9 |
2 8
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
10 |
9 1
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
11 |
|
fnfvelrn |
⊢ ( ( 𝐹 Fn 𝑍 ∧ 𝑀 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑀 ) ∈ ran 𝐹 ) |
12 |
7 10 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ ran 𝐹 ) |
13 |
12
|
ne0d |
⊢ ( 𝜑 → ran 𝐹 ≠ ∅ ) |
14 |
|
breq2 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑘 ) → ( 𝑥 ≤ 𝑦 ↔ 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ) |
15 |
14
|
ralrn |
⊢ ( 𝐹 Fn 𝑍 → ( ∀ 𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦 ↔ ∀ 𝑘 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ) |
16 |
15
|
rexbidv |
⊢ ( 𝐹 Fn 𝑍 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ) |
17 |
7 16
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ) |
18 |
5 17
|
mpbird |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦 ) |
19 |
6 13 18
|
3jca |
⊢ ( 𝜑 → ( ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦 ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦 ) ) |
21 |
|
infrecl |
⊢ ( ( ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦 ) → inf ( ran 𝐹 , ℝ , < ) ∈ ℝ ) |
22 |
20 21
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → inf ( ran 𝐹 , ℝ , < ) ∈ ℝ ) |
23 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝑦 ∈ ℝ+ ) |
24 |
22 23
|
ltaddrpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → inf ( ran 𝐹 , ℝ , < ) < ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) ) |
25 |
|
rpre |
⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ ) |
26 |
25
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝑦 ∈ ℝ ) |
27 |
22 26
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) ∈ ℝ ) |
28 |
|
infrglb |
⊢ ( ( ( ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦 ) ∧ ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) ∈ ℝ ) → ( inf ( ran 𝐹 , ℝ , < ) < ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) ↔ ∃ 𝑘 ∈ ran 𝐹 𝑘 < ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) ) ) |
29 |
20 27 28
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( inf ( ran 𝐹 , ℝ , < ) < ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) ↔ ∃ 𝑘 ∈ ran 𝐹 𝑘 < ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) ) ) |
30 |
24 29
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑘 ∈ ran 𝐹 𝑘 < ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) ) |
31 |
6
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ran 𝐹 ) → 𝑘 ∈ ℝ ) |
32 |
31
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ran 𝐹 ) → 𝑘 ∈ ℝ ) |
33 |
22
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ran 𝐹 ) → inf ( ran 𝐹 , ℝ , < ) ∈ ℝ ) |
34 |
25
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ran 𝐹 ) → 𝑦 ∈ ℝ ) |
35 |
33 34
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ran 𝐹 ) → ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) ∈ ℝ ) |
36 |
32 35 34
|
ltsub1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ran 𝐹 ) → ( 𝑘 < ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) ↔ ( 𝑘 − 𝑦 ) < ( ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) − 𝑦 ) ) ) |
37 |
6 13 18 21
|
syl3anc |
⊢ ( 𝜑 → inf ( ran 𝐹 , ℝ , < ) ∈ ℝ ) |
38 |
37
|
recnd |
⊢ ( 𝜑 → inf ( ran 𝐹 , ℝ , < ) ∈ ℂ ) |
39 |
38
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ran 𝐹 ) → inf ( ran 𝐹 , ℝ , < ) ∈ ℂ ) |
40 |
34
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ran 𝐹 ) → 𝑦 ∈ ℂ ) |
41 |
39 40
|
pncand |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ran 𝐹 ) → ( ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) − 𝑦 ) = inf ( ran 𝐹 , ℝ , < ) ) |
42 |
41
|
breq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ran 𝐹 ) → ( ( 𝑘 − 𝑦 ) < ( ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) − 𝑦 ) ↔ ( 𝑘 − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ) ) |
43 |
36 42
|
bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ran 𝐹 ) → ( 𝑘 < ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) ↔ ( 𝑘 − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ) ) |
44 |
43
|
biimpd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ran 𝐹 ) → ( 𝑘 < ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) → ( 𝑘 − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ) ) |
45 |
44
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( ∃ 𝑘 ∈ ran 𝐹 𝑘 < ( inf ( ran 𝐹 , ℝ , < ) + 𝑦 ) → ∃ 𝑘 ∈ ran 𝐹 ( 𝑘 − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ) ) |
46 |
30 45
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑘 ∈ ran 𝐹 ( 𝑘 − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ) |
47 |
|
oveq1 |
⊢ ( 𝑘 = ( 𝐹 ‘ 𝑗 ) → ( 𝑘 − 𝑦 ) = ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) |
48 |
47
|
breq1d |
⊢ ( 𝑘 = ( 𝐹 ‘ 𝑗 ) → ( ( 𝑘 − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ↔ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ) ) |
49 |
48
|
rexrn |
⊢ ( 𝐹 Fn 𝑍 → ( ∃ 𝑘 ∈ ran 𝐹 ( 𝑘 − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ↔ ∃ 𝑗 ∈ 𝑍 ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ) ) |
50 |
7 49
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ran 𝐹 ( 𝑘 − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ↔ ∃ 𝑗 ∈ 𝑍 ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ) ) |
51 |
50
|
biimpa |
⊢ ( ( 𝜑 ∧ ∃ 𝑘 ∈ ran 𝐹 ( 𝑘 − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ) → ∃ 𝑗 ∈ 𝑍 ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ) |
52 |
46 51
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ) |
53 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝐹 : 𝑍 ⟶ ℝ ) |
54 |
1
|
uztrn2 |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
55 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝑍 ⟶ ℝ ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
56 |
53 54 55
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
57 |
|
simpl |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑗 ∈ 𝑍 ) |
58 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝑍 ⟶ ℝ ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) |
59 |
53 57 58
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) |
60 |
37
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → inf ( ran 𝐹 , ℝ , < ) ∈ ℝ ) |
61 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
62 |
|
fzssuz |
⊢ ( 𝑗 ... 𝑘 ) ⊆ ( ℤ≥ ‘ 𝑗 ) |
63 |
|
uzss |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝑗 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
64 |
63 1
|
sseqtrrdi |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝑗 ) ⊆ 𝑍 ) |
65 |
64 1
|
eleq2s |
⊢ ( 𝑗 ∈ 𝑍 → ( ℤ≥ ‘ 𝑗 ) ⊆ 𝑍 ) |
66 |
65
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ℤ≥ ‘ 𝑗 ) ⊆ 𝑍 ) |
67 |
62 66
|
sstrid |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑗 ... 𝑘 ) ⊆ 𝑍 ) |
68 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝑍 ⟶ ℝ ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) |
69 |
68
|
ralrimiva |
⊢ ( 𝐹 : 𝑍 ⟶ ℝ → ∀ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) |
70 |
3 69
|
syl |
⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) |
71 |
70
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ∀ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) |
72 |
|
ssralv |
⊢ ( ( 𝑗 ... 𝑘 ) ⊆ 𝑍 → ( ∀ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ∈ ℝ → ∀ 𝑛 ∈ ( 𝑗 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) ) |
73 |
67 71 72
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ∀ 𝑛 ∈ ( 𝑗 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) |
74 |
73
|
r19.21bi |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑛 ∈ ( 𝑗 ... 𝑘 ) ) → ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) |
75 |
|
fzssuz |
⊢ ( 𝑗 ... ( 𝑘 − 1 ) ) ⊆ ( ℤ≥ ‘ 𝑗 ) |
76 |
75 66
|
sstrid |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑗 ... ( 𝑘 − 1 ) ) ⊆ 𝑍 ) |
77 |
76
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑛 ∈ ( 𝑗 ... ( 𝑘 − 1 ) ) ) → 𝑛 ∈ 𝑍 ) |
78 |
4
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
79 |
78
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
80 |
|
fvoveq1 |
⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
81 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑛 ) ) |
82 |
80 81
|
breq12d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ≤ ( 𝐹 ‘ 𝑛 ) ) ) |
83 |
82
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ≤ ( 𝐹 ‘ 𝑛 ) ) |
84 |
79 83
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ≤ ( 𝐹 ‘ 𝑛 ) ) |
85 |
77 84
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑛 ∈ ( 𝑗 ... ( 𝑘 − 1 ) ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ≤ ( 𝐹 ‘ 𝑛 ) ) |
86 |
61 74 85
|
monoord2 |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ 𝑗 ) ) |
87 |
56 59 60 86
|
lesub1dd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) − inf ( ran 𝐹 , ℝ , < ) ) ) |
88 |
56 60
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ∈ ℝ ) |
89 |
59 60
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝐹 ‘ 𝑗 ) − inf ( ran 𝐹 , ℝ , < ) ) ∈ ℝ ) |
90 |
25
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑦 ∈ ℝ ) |
91 |
|
lelttr |
⊢ ( ( ( ( 𝐹 ‘ 𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑗 ) − inf ( ran 𝐹 , ℝ , < ) ) ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( ( 𝐹 ‘ 𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) − inf ( ran 𝐹 , ℝ , < ) ) ∧ ( ( 𝐹 ‘ 𝑗 ) − inf ( ran 𝐹 , ℝ , < ) ) < 𝑦 ) → ( ( 𝐹 ‘ 𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) < 𝑦 ) ) |
92 |
88 89 90 91
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) − inf ( ran 𝐹 , ℝ , < ) ) ∧ ( ( 𝐹 ‘ 𝑗 ) − inf ( ran 𝐹 , ℝ , < ) ) < 𝑦 ) → ( ( 𝐹 ‘ 𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) < 𝑦 ) ) |
93 |
87 92
|
mpand |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( 𝐹 ‘ 𝑗 ) − inf ( ran 𝐹 , ℝ , < ) ) < 𝑦 → ( ( 𝐹 ‘ 𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) < 𝑦 ) ) |
94 |
|
ltsub23 |
⊢ ( ( ( 𝐹 ‘ 𝑗 ) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ inf ( ran 𝐹 , ℝ , < ) ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ↔ ( ( 𝐹 ‘ 𝑗 ) − inf ( ran 𝐹 , ℝ , < ) ) < 𝑦 ) ) |
95 |
59 90 60 94
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) ↔ ( ( 𝐹 ‘ 𝑗 ) − inf ( ran 𝐹 , ℝ , < ) ) < 𝑦 ) ) |
96 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ran 𝐹 ⊆ ℝ ) |
97 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝐹 Fn 𝑍 ) |
98 |
|
fnfvelrn |
⊢ ( ( 𝐹 Fn 𝑍 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ran 𝐹 ) |
99 |
97 54 98
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ran 𝐹 ) |
100 |
96 99
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
101 |
18
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦 ) |
102 |
|
infrelb |
⊢ ( ( ran 𝐹 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ran 𝐹 ) → inf ( ran 𝐹 , ℝ , < ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
103 |
96 101 99 102
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → inf ( ran 𝐹 , ℝ , < ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
104 |
60 100 103
|
abssubge0d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ) = ( ( 𝐹 ‘ 𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ) |
105 |
104
|
breq1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ) < 𝑦 ↔ ( ( 𝐹 ‘ 𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) < 𝑦 ) ) |
106 |
93 95 105
|
3imtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ) < 𝑦 ) ) |
107 |
106
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ) < 𝑦 ) ) |
108 |
107
|
ralrimdva |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ) < 𝑦 ) ) |
109 |
108
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ 𝑍 ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) < inf ( ran 𝐹 , ℝ , < ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ) < 𝑦 ) ) |
110 |
52 109
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ) < 𝑦 ) |
111 |
110
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ) < 𝑦 ) |
112 |
1
|
fvexi |
⊢ 𝑍 ∈ V |
113 |
|
fex |
⊢ ( ( 𝐹 : 𝑍 ⟶ ℝ ∧ 𝑍 ∈ V ) → 𝐹 ∈ V ) |
114 |
3 112 113
|
sylancl |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
115 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
116 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
117 |
116
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
118 |
1 2 114 115 38 117
|
clim2c |
⊢ ( 𝜑 → ( 𝐹 ⇝ inf ( ran 𝐹 , ℝ , < ) ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − inf ( ran 𝐹 , ℝ , < ) ) ) < 𝑦 ) ) |
119 |
111 118
|
mpbird |
⊢ ( 𝜑 → 𝐹 ⇝ inf ( ran 𝐹 , ℝ , < ) ) |