| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							climinf2lem.1 | 
							⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 )  | 
						
						
							| 2 | 
							
								
							 | 
							climinf2lem.2 | 
							⊢ ( 𝜑  →  𝑀  ∈  ℤ )  | 
						
						
							| 3 | 
							
								
							 | 
							climinf2lem.3 | 
							⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ℝ )  | 
						
						
							| 4 | 
							
								
							 | 
							climinf2lem.4 | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ ( 𝑘  +  1 ) )  ≤  ( 𝐹 ‘ 𝑘 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							climinf2lem.5 | 
							⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ ∀ 𝑘  ∈  𝑍 𝑥  ≤  ( 𝐹 ‘ 𝑘 ) )  | 
						
						
							| 6 | 
							
								1 2 3 4 5
							 | 
							climinf | 
							⊢ ( 𝜑  →  𝐹  ⇝  inf ( ran  𝐹 ,  ℝ ,   <  ) )  | 
						
						
							| 7 | 
							
								3
							 | 
							frnd | 
							⊢ ( 𝜑  →  ran  𝐹  ⊆  ℝ )  | 
						
						
							| 8 | 
							
								3
							 | 
							ffnd | 
							⊢ ( 𝜑  →  𝐹  Fn  𝑍 )  | 
						
						
							| 9 | 
							
								2 1
							 | 
							uzidd2 | 
							⊢ ( 𝜑  →  𝑀  ∈  𝑍 )  | 
						
						
							| 10 | 
							
								
							 | 
							fnfvelrn | 
							⊢ ( ( 𝐹  Fn  𝑍  ∧  𝑀  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑀 )  ∈  ran  𝐹 )  | 
						
						
							| 11 | 
							
								8 9 10
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  ∈  ran  𝐹 )  | 
						
						
							| 12 | 
							
								11
							 | 
							ne0d | 
							⊢ ( 𝜑  →  ran  𝐹  ≠  ∅ )  | 
						
						
							| 13 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  ran  𝐹 )  →  𝑦  ∈  ran  𝐹 )  | 
						
						
							| 14 | 
							
								
							 | 
							fvelrnb | 
							⊢ ( 𝐹  Fn  𝑍  →  ( 𝑦  ∈  ran  𝐹  ↔  ∃ 𝑘  ∈  𝑍 ( 𝐹 ‘ 𝑘 )  =  𝑦 ) )  | 
						
						
							| 15 | 
							
								8 14
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝑦  ∈  ran  𝐹  ↔  ∃ 𝑘  ∈  𝑍 ( 𝐹 ‘ 𝑘 )  =  𝑦 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  ran  𝐹 )  →  ( 𝑦  ∈  ran  𝐹  ↔  ∃ 𝑘  ∈  𝑍 ( 𝐹 ‘ 𝑘 )  =  𝑦 ) )  | 
						
						
							| 17 | 
							
								13 16
							 | 
							mpbid | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  ran  𝐹 )  →  ∃ 𝑘  ∈  𝑍 ( 𝐹 ‘ 𝑘 )  =  𝑦 )  | 
						
						
							| 18 | 
							
								17
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  𝑍 𝑥  ≤  ( 𝐹 ‘ 𝑘 ) )  ∧  𝑦  ∈  ran  𝐹 )  →  ∃ 𝑘  ∈  𝑍 ( 𝐹 ‘ 𝑘 )  =  𝑦 )  | 
						
						
							| 19 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑘 𝜑  | 
						
						
							| 20 | 
							
								
							 | 
							nfra1 | 
							⊢ Ⅎ 𝑘 ∀ 𝑘  ∈  𝑍 𝑥  ≤  ( 𝐹 ‘ 𝑘 )  | 
						
						
							| 21 | 
							
								19 20
							 | 
							nfan | 
							⊢ Ⅎ 𝑘 ( 𝜑  ∧  ∀ 𝑘  ∈  𝑍 𝑥  ≤  ( 𝐹 ‘ 𝑘 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑘 𝑥  ≤  𝑦  | 
						
						
							| 23 | 
							
								
							 | 
							rspa | 
							⊢ ( ( ∀ 𝑘  ∈  𝑍 𝑥  ≤  ( 𝐹 ‘ 𝑘 )  ∧  𝑘  ∈  𝑍 )  →  𝑥  ≤  ( 𝐹 ‘ 𝑘 ) )  | 
						
						
							| 24 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝑥  ≤  ( 𝐹 ‘ 𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  𝑦 )  →  𝑥  ≤  ( 𝐹 ‘ 𝑘 ) )  | 
						
						
							| 25 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑥  ≤  ( 𝐹 ‘ 𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  𝑦 )  →  ( 𝐹 ‘ 𝑘 )  =  𝑦 )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							breqtrd | 
							⊢ ( ( 𝑥  ≤  ( 𝐹 ‘ 𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  𝑦 )  →  𝑥  ≤  𝑦 )  | 
						
						
							| 27 | 
							
								26
							 | 
							ex | 
							⊢ ( 𝑥  ≤  ( 𝐹 ‘ 𝑘 )  →  ( ( 𝐹 ‘ 𝑘 )  =  𝑦  →  𝑥  ≤  𝑦 ) )  | 
						
						
							| 28 | 
							
								23 27
							 | 
							syl | 
							⊢ ( ( ∀ 𝑘  ∈  𝑍 𝑥  ≤  ( 𝐹 ‘ 𝑘 )  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑘 )  =  𝑦  →  𝑥  ≤  𝑦 ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							ex | 
							⊢ ( ∀ 𝑘  ∈  𝑍 𝑥  ≤  ( 𝐹 ‘ 𝑘 )  →  ( 𝑘  ∈  𝑍  →  ( ( 𝐹 ‘ 𝑘 )  =  𝑦  →  𝑥  ≤  𝑦 ) ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  ∀ 𝑘  ∈  𝑍 𝑥  ≤  ( 𝐹 ‘ 𝑘 ) )  →  ( 𝑘  ∈  𝑍  →  ( ( 𝐹 ‘ 𝑘 )  =  𝑦  →  𝑥  ≤  𝑦 ) ) )  | 
						
						
							| 31 | 
							
								21 22 30
							 | 
							rexlimd | 
							⊢ ( ( 𝜑  ∧  ∀ 𝑘  ∈  𝑍 𝑥  ≤  ( 𝐹 ‘ 𝑘 ) )  →  ( ∃ 𝑘  ∈  𝑍 ( 𝐹 ‘ 𝑘 )  =  𝑦  →  𝑥  ≤  𝑦 ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  𝑍 𝑥  ≤  ( 𝐹 ‘ 𝑘 ) )  ∧  𝑦  ∈  ran  𝐹 )  →  ( ∃ 𝑘  ∈  𝑍 ( 𝐹 ‘ 𝑘 )  =  𝑦  →  𝑥  ≤  𝑦 ) )  | 
						
						
							| 33 | 
							
								18 32
							 | 
							mpd | 
							⊢ ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  𝑍 𝑥  ≤  ( 𝐹 ‘ 𝑘 ) )  ∧  𝑦  ∈  ran  𝐹 )  →  𝑥  ≤  𝑦 )  | 
						
						
							| 34 | 
							
								33
							 | 
							ralrimiva | 
							⊢ ( ( 𝜑  ∧  ∀ 𝑘  ∈  𝑍 𝑥  ≤  ( 𝐹 ‘ 𝑘 ) )  →  ∀ 𝑦  ∈  ran  𝐹 𝑥  ≤  𝑦 )  | 
						
						
							| 35 | 
							
								34
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ∀ 𝑘  ∈  𝑍 𝑥  ≤  ( 𝐹 ‘ 𝑘 ) )  →  ∀ 𝑦  ∈  ran  𝐹 𝑥  ≤  𝑦 )  | 
						
						
							| 36 | 
							
								35
							 | 
							ex | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ∀ 𝑘  ∈  𝑍 𝑥  ≤  ( 𝐹 ‘ 𝑘 )  →  ∀ 𝑦  ∈  ran  𝐹 𝑥  ≤  𝑦 ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							reximdva | 
							⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ℝ ∀ 𝑘  ∈  𝑍 𝑥  ≤  ( 𝐹 ‘ 𝑘 )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  ran  𝐹 𝑥  ≤  𝑦 ) )  | 
						
						
							| 38 | 
							
								5 37
							 | 
							mpd | 
							⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  ran  𝐹 𝑥  ≤  𝑦 )  | 
						
						
							| 39 | 
							
								
							 | 
							infxrre | 
							⊢ ( ( ran  𝐹  ⊆  ℝ  ∧  ran  𝐹  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  ran  𝐹 𝑥  ≤  𝑦 )  →  inf ( ran  𝐹 ,  ℝ* ,   <  )  =  inf ( ran  𝐹 ,  ℝ ,   <  ) )  | 
						
						
							| 40 | 
							
								7 12 38 39
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  inf ( ran  𝐹 ,  ℝ* ,   <  )  =  inf ( ran  𝐹 ,  ℝ ,   <  ) )  | 
						
						
							| 41 | 
							
								6 40
							 | 
							breqtrrd | 
							⊢ ( 𝜑  →  𝐹  ⇝  inf ( ran  𝐹 ,  ℝ* ,   <  ) )  |