| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							climinf3.1 | 
							⊢ Ⅎ 𝑘 𝜑  | 
						
						
							| 2 | 
							
								
							 | 
							climinf3.2 | 
							⊢ Ⅎ 𝑘 𝐹  | 
						
						
							| 3 | 
							
								
							 | 
							climinf3.3 | 
							⊢ ( 𝜑  →  𝑀  ∈  ℤ )  | 
						
						
							| 4 | 
							
								
							 | 
							climinf3.4 | 
							⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 )  | 
						
						
							| 5 | 
							
								
							 | 
							climinf3.5 | 
							⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ℝ )  | 
						
						
							| 6 | 
							
								
							 | 
							climinf3.6 | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ ( 𝑘  +  1 ) )  ≤  ( 𝐹 ‘ 𝑘 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							climinf3.7 | 
							⊢ ( 𝜑  →  𝐹  ∈  dom   ⇝  )  | 
						
						
							| 8 | 
							
								5
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ )  | 
						
						
							| 9 | 
							
								8
							 | 
							recnd | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ )  | 
						
						
							| 10 | 
							
								1 9
							 | 
							ralrimia | 
							⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝑍 ( 𝐹 ‘ 𝑘 )  ∈  ℂ )  | 
						
						
							| 11 | 
							
								2 4
							 | 
							climbddf | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝐹  ∈  dom   ⇝   ∧  ∀ 𝑘  ∈  𝑍 ( 𝐹 ‘ 𝑘 )  ∈  ℂ )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥 )  | 
						
						
							| 12 | 
							
								3 7 10 11
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥 )  | 
						
						
							| 13 | 
							
								
							 | 
							renegcl | 
							⊢ ( 𝑥  ∈  ℝ  →  - 𝑥  ∈  ℝ )  | 
						
						
							| 14 | 
							
								13
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥 )  →  - 𝑥  ∈  ℝ )  | 
						
						
							| 15 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑘 𝑥  ∈  ℝ  | 
						
						
							| 16 | 
							
								1 15
							 | 
							nfan | 
							⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑥  ∈  ℝ )  | 
						
						
							| 17 | 
							
								
							 | 
							nfra1 | 
							⊢ Ⅎ 𝑘 ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥  | 
						
						
							| 18 | 
							
								16 17
							 | 
							nfan | 
							⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥 )  | 
						
						
							| 19 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥 )  ∧  𝑘  ∈  𝑍 )  →  ( 𝜑  ∧  𝑥  ∈  ℝ ) )  | 
						
						
							| 20 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥 )  ∧  𝑘  ∈  𝑍 )  →  𝑘  ∈  𝑍 )  | 
						
						
							| 21 | 
							
								
							 | 
							rspa | 
							⊢ ( ( ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥  ∧  𝑘  ∈  𝑍 )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥 )  | 
						
						
							| 22 | 
							
								21
							 | 
							adantll | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥 )  ∧  𝑘  ∈  𝑍 )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥 )  | 
						
						
							| 23 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑘  ∈  𝑍 )  ∧  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥 )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥 )  | 
						
						
							| 24 | 
							
								8
							 | 
							ad4ant13 | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑘  ∈  𝑍 )  ∧  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ )  | 
						
						
							| 25 | 
							
								
							 | 
							simpllr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑘  ∈  𝑍 )  ∧  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥 )  →  𝑥  ∈  ℝ )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							absled | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑘  ∈  𝑍 )  ∧  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥 )  →  ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥  ↔  ( - 𝑥  ≤  ( 𝐹 ‘ 𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  ≤  𝑥 ) ) )  | 
						
						
							| 27 | 
							
								23 26
							 | 
							mpbid | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑘  ∈  𝑍 )  ∧  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥 )  →  ( - 𝑥  ≤  ( 𝐹 ‘ 𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  ≤  𝑥 ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							simpld | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑘  ∈  𝑍 )  ∧  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥 )  →  - 𝑥  ≤  ( 𝐹 ‘ 𝑘 ) )  | 
						
						
							| 29 | 
							
								19 20 22 28
							 | 
							syl21anc | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥 )  ∧  𝑘  ∈  𝑍 )  →  - 𝑥  ≤  ( 𝐹 ‘ 𝑘 ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							ex | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥 )  →  ( 𝑘  ∈  𝑍  →  - 𝑥  ≤  ( 𝐹 ‘ 𝑘 ) ) )  | 
						
						
							| 31 | 
							
								18 30
							 | 
							ralrimi | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥 )  →  ∀ 𝑘  ∈  𝑍 - 𝑥  ≤  ( 𝐹 ‘ 𝑘 ) )  | 
						
						
							| 32 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑦  =  - 𝑥  →  ( 𝑦  ≤  ( 𝐹 ‘ 𝑘 )  ↔  - 𝑥  ≤  ( 𝐹 ‘ 𝑘 ) ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							ralbidv | 
							⊢ ( 𝑦  =  - 𝑥  →  ( ∀ 𝑘  ∈  𝑍 𝑦  ≤  ( 𝐹 ‘ 𝑘 )  ↔  ∀ 𝑘  ∈  𝑍 - 𝑥  ≤  ( 𝐹 ‘ 𝑘 ) ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							rspcev | 
							⊢ ( ( - 𝑥  ∈  ℝ  ∧  ∀ 𝑘  ∈  𝑍 - 𝑥  ≤  ( 𝐹 ‘ 𝑘 ) )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑘  ∈  𝑍 𝑦  ≤  ( 𝐹 ‘ 𝑘 ) )  | 
						
						
							| 35 | 
							
								14 31 34
							 | 
							syl2anc | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥 )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑘  ∈  𝑍 𝑦  ≤  ( 𝐹 ‘ 𝑘 ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							rexlimdva2 | 
							⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ℝ ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥  →  ∃ 𝑦  ∈  ℝ ∀ 𝑘  ∈  𝑍 𝑦  ≤  ( 𝐹 ‘ 𝑘 ) ) )  | 
						
						
							| 37 | 
							
								12 36
							 | 
							mpd | 
							⊢ ( 𝜑  →  ∃ 𝑦  ∈  ℝ ∀ 𝑘  ∈  𝑍 𝑦  ≤  ( 𝐹 ‘ 𝑘 ) )  | 
						
						
							| 38 | 
							
								1 2 4 3 5 6 37
							 | 
							climinf2 | 
							⊢ ( 𝜑  →  𝐹  ⇝  inf ( ran  𝐹 ,  ℝ* ,   <  ) )  |