Step |
Hyp |
Ref |
Expression |
1 |
|
climinff.1 |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
climinff.2 |
⊢ Ⅎ 𝑘 𝐹 |
3 |
|
climinff.3 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
4 |
|
climinff.4 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
5 |
|
climinff.5 |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ ) |
6 |
|
climinff.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
7 |
|
climinff.7 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) |
8 |
|
nfv |
⊢ Ⅎ 𝑘 𝑗 ∈ 𝑍 |
9 |
1 8
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) |
10 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 𝑗 + 1 ) |
11 |
2 10
|
nffv |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ ( 𝑗 + 1 ) ) |
12 |
|
nfcv |
⊢ Ⅎ 𝑘 ≤ |
13 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑗 |
14 |
2 13
|
nffv |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑗 ) |
15 |
11 12 14
|
nfbr |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝐹 ‘ 𝑗 ) |
16 |
9 15
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝐹 ‘ 𝑗 ) ) |
17 |
|
eleq1w |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍 ) ) |
18 |
17
|
anbi2d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ↔ ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ) ) |
19 |
|
fvoveq1 |
⊢ ( 𝑘 = 𝑗 → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) |
20 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑗 ) ) |
21 |
19 20
|
breq12d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ↔ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
22 |
18 21
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝐹 ‘ 𝑗 ) ) ) ) |
23 |
16 22 6
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝐹 ‘ 𝑗 ) ) |
24 |
|
nfcv |
⊢ Ⅎ 𝑘 ℝ |
25 |
8
|
nfci |
⊢ Ⅎ 𝑘 𝑍 |
26 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑥 |
27 |
26 12 14
|
nfbr |
⊢ Ⅎ 𝑘 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) |
28 |
25 27
|
nfralw |
⊢ Ⅎ 𝑘 ∀ 𝑗 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) |
29 |
24 28
|
nfrex |
⊢ Ⅎ 𝑘 ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) |
30 |
1 29
|
nfim |
⊢ Ⅎ 𝑘 ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) |
31 |
|
nfv |
⊢ Ⅎ 𝑗 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) |
32 |
20
|
breq2d |
⊢ ( 𝑘 = 𝑗 → ( 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ↔ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
33 |
31 27 32
|
cbvralw |
⊢ ( ∀ 𝑘 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ↔ ∀ 𝑗 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) |
34 |
33
|
a1i |
⊢ ( 𝑘 = 𝑗 → ( ∀ 𝑘 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ↔ ∀ 𝑗 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
35 |
34
|
rexbidv |
⊢ ( 𝑘 = 𝑗 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
36 |
35
|
imbi2d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ↔ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) ) |
37 |
30 36 7
|
chvarfv |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) |
38 |
3 4 5 23 37
|
climinf |
⊢ ( 𝜑 → 𝐹 ⇝ inf ( ran 𝐹 , ℝ , < ) ) |