Metamath Proof Explorer


Theorem climinff

Description: A version of climinf using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017) (Revised by AV, 15-Sep-2020)

Ref Expression
Hypotheses climinff.1 𝑘 𝜑
climinff.2 𝑘 𝐹
climinff.3 𝑍 = ( ℤ𝑀 )
climinff.4 ( 𝜑𝑀 ∈ ℤ )
climinff.5 ( 𝜑𝐹 : 𝑍 ⟶ ℝ )
climinff.6 ( ( 𝜑𝑘𝑍 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹𝑘 ) )
climinff.7 ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑘𝑍 𝑥 ≤ ( 𝐹𝑘 ) )
Assertion climinff ( 𝜑𝐹 ⇝ inf ( ran 𝐹 , ℝ , < ) )

Proof

Step Hyp Ref Expression
1 climinff.1 𝑘 𝜑
2 climinff.2 𝑘 𝐹
3 climinff.3 𝑍 = ( ℤ𝑀 )
4 climinff.4 ( 𝜑𝑀 ∈ ℤ )
5 climinff.5 ( 𝜑𝐹 : 𝑍 ⟶ ℝ )
6 climinff.6 ( ( 𝜑𝑘𝑍 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹𝑘 ) )
7 climinff.7 ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑘𝑍 𝑥 ≤ ( 𝐹𝑘 ) )
8 nfv 𝑘 𝑗𝑍
9 1 8 nfan 𝑘 ( 𝜑𝑗𝑍 )
10 nfcv 𝑘 ( 𝑗 + 1 )
11 2 10 nffv 𝑘 ( 𝐹 ‘ ( 𝑗 + 1 ) )
12 nfcv 𝑘
13 nfcv 𝑘 𝑗
14 2 13 nffv 𝑘 ( 𝐹𝑗 )
15 11 12 14 nfbr 𝑘 ( 𝐹 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝐹𝑗 )
16 9 15 nfim 𝑘 ( ( 𝜑𝑗𝑍 ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝐹𝑗 ) )
17 eleq1w ( 𝑘 = 𝑗 → ( 𝑘𝑍𝑗𝑍 ) )
18 17 anbi2d ( 𝑘 = 𝑗 → ( ( 𝜑𝑘𝑍 ) ↔ ( 𝜑𝑗𝑍 ) ) )
19 fvoveq1 ( 𝑘 = 𝑗 → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝐹 ‘ ( 𝑗 + 1 ) ) )
20 fveq2 ( 𝑘 = 𝑗 → ( 𝐹𝑘 ) = ( 𝐹𝑗 ) )
21 19 20 breq12d ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹𝑘 ) ↔ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝐹𝑗 ) ) )
22 18 21 imbi12d ( 𝑘 = 𝑗 → ( ( ( 𝜑𝑘𝑍 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹𝑘 ) ) ↔ ( ( 𝜑𝑗𝑍 ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝐹𝑗 ) ) ) )
23 16 22 6 chvarfv ( ( 𝜑𝑗𝑍 ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝐹𝑗 ) )
24 nfcv 𝑘
25 8 nfci 𝑘 𝑍
26 nfcv 𝑘 𝑥
27 26 12 14 nfbr 𝑘 𝑥 ≤ ( 𝐹𝑗 )
28 25 27 nfralw 𝑘𝑗𝑍 𝑥 ≤ ( 𝐹𝑗 )
29 24 28 nfrex 𝑘𝑥 ∈ ℝ ∀ 𝑗𝑍 𝑥 ≤ ( 𝐹𝑗 )
30 1 29 nfim 𝑘 ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑗𝑍 𝑥 ≤ ( 𝐹𝑗 ) )
31 nfv 𝑗 𝑥 ≤ ( 𝐹𝑘 )
32 20 breq2d ( 𝑘 = 𝑗 → ( 𝑥 ≤ ( 𝐹𝑘 ) ↔ 𝑥 ≤ ( 𝐹𝑗 ) ) )
33 31 27 32 cbvralw ( ∀ 𝑘𝑍 𝑥 ≤ ( 𝐹𝑘 ) ↔ ∀ 𝑗𝑍 𝑥 ≤ ( 𝐹𝑗 ) )
34 33 a1i ( 𝑘 = 𝑗 → ( ∀ 𝑘𝑍 𝑥 ≤ ( 𝐹𝑘 ) ↔ ∀ 𝑗𝑍 𝑥 ≤ ( 𝐹𝑗 ) ) )
35 34 rexbidv ( 𝑘 = 𝑗 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑘𝑍 𝑥 ≤ ( 𝐹𝑘 ) ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑗𝑍 𝑥 ≤ ( 𝐹𝑗 ) ) )
36 35 imbi2d ( 𝑘 = 𝑗 → ( ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑘𝑍 𝑥 ≤ ( 𝐹𝑘 ) ) ↔ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑗𝑍 𝑥 ≤ ( 𝐹𝑗 ) ) ) )
37 30 36 7 chvarfv ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑗𝑍 𝑥 ≤ ( 𝐹𝑗 ) )
38 3 4 5 23 37 climinf ( 𝜑𝐹 ⇝ inf ( ran 𝐹 , ℝ , < ) )