Step |
Hyp |
Ref |
Expression |
1 |
|
clim2ser.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
climlec2.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
climlec2.3 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
4 |
|
climlec2.4 |
⊢ ( 𝜑 → 𝐹 ⇝ 𝐵 ) |
5 |
|
climlec2.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
6 |
|
climlec2.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ≤ ( 𝐹 ‘ 𝑘 ) ) |
7 |
3
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
8 |
|
0z |
⊢ 0 ∈ ℤ |
9 |
|
uzssz |
⊢ ( ℤ≥ ‘ 0 ) ⊆ ℤ |
10 |
|
zex |
⊢ ℤ ∈ V |
11 |
9 10
|
climconst2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ∈ ℤ ) → ( ℤ × { 𝐴 } ) ⇝ 𝐴 ) |
12 |
7 8 11
|
sylancl |
⊢ ( 𝜑 → ( ℤ × { 𝐴 } ) ⇝ 𝐴 ) |
13 |
|
eluzelz |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ ℤ ) |
14 |
13 1
|
eleq2s |
⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ ) |
15 |
|
fvconst2g |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℤ ) → ( ( ℤ × { 𝐴 } ) ‘ 𝑘 ) = 𝐴 ) |
16 |
3 14 15
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ℤ × { 𝐴 } ) ‘ 𝑘 ) = 𝐴 ) |
17 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℝ ) |
18 |
16 17
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ℤ × { 𝐴 } ) ‘ 𝑘 ) ∈ ℝ ) |
19 |
16 6
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ℤ × { 𝐴 } ) ‘ 𝑘 ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
20 |
1 2 12 4 18 5 19
|
climle |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |