Metamath Proof Explorer


Theorem climlec2

Description: Comparison of a constant to the limit of a sequence. (Contributed by NM, 28-Feb-2008) (Revised by Mario Carneiro, 1-Feb-2014)

Ref Expression
Hypotheses clim2ser.1 𝑍 = ( ℤ𝑀 )
climlec2.2 ( 𝜑𝑀 ∈ ℤ )
climlec2.3 ( 𝜑𝐴 ∈ ℝ )
climlec2.4 ( 𝜑𝐹𝐵 )
climlec2.5 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℝ )
climlec2.6 ( ( 𝜑𝑘𝑍 ) → 𝐴 ≤ ( 𝐹𝑘 ) )
Assertion climlec2 ( 𝜑𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 clim2ser.1 𝑍 = ( ℤ𝑀 )
2 climlec2.2 ( 𝜑𝑀 ∈ ℤ )
3 climlec2.3 ( 𝜑𝐴 ∈ ℝ )
4 climlec2.4 ( 𝜑𝐹𝐵 )
5 climlec2.5 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℝ )
6 climlec2.6 ( ( 𝜑𝑘𝑍 ) → 𝐴 ≤ ( 𝐹𝑘 ) )
7 3 recnd ( 𝜑𝐴 ∈ ℂ )
8 0z 0 ∈ ℤ
9 uzssz ( ℤ ‘ 0 ) ⊆ ℤ
10 zex ℤ ∈ V
11 9 10 climconst2 ( ( 𝐴 ∈ ℂ ∧ 0 ∈ ℤ ) → ( ℤ × { 𝐴 } ) ⇝ 𝐴 )
12 7 8 11 sylancl ( 𝜑 → ( ℤ × { 𝐴 } ) ⇝ 𝐴 )
13 eluzelz ( 𝑘 ∈ ( ℤ𝑀 ) → 𝑘 ∈ ℤ )
14 13 1 eleq2s ( 𝑘𝑍𝑘 ∈ ℤ )
15 fvconst2g ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℤ ) → ( ( ℤ × { 𝐴 } ) ‘ 𝑘 ) = 𝐴 )
16 3 14 15 syl2an ( ( 𝜑𝑘𝑍 ) → ( ( ℤ × { 𝐴 } ) ‘ 𝑘 ) = 𝐴 )
17 3 adantr ( ( 𝜑𝑘𝑍 ) → 𝐴 ∈ ℝ )
18 16 17 eqeltrd ( ( 𝜑𝑘𝑍 ) → ( ( ℤ × { 𝐴 } ) ‘ 𝑘 ) ∈ ℝ )
19 16 6 eqbrtrd ( ( 𝜑𝑘𝑍 ) → ( ( ℤ × { 𝐴 } ) ‘ 𝑘 ) ≤ ( 𝐹𝑘 ) )
20 1 2 12 4 18 5 19 climle ( 𝜑𝐴𝐵 )