Step |
Hyp |
Ref |
Expression |
1 |
|
climleltrp.k |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
climleltrp.f |
⊢ Ⅎ 𝑘 𝐹 |
3 |
|
climleltrp.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
4 |
|
climleltrp.n |
⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) |
5 |
|
climleltrp.r |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
6 |
|
climleltrp.a |
⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) |
7 |
|
climleltrp.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
8 |
|
climleltrp.l |
⊢ ( 𝜑 → 𝐴 ≤ 𝐶 ) |
9 |
|
climleltrp.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ+ ) |
10 |
4 3
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
11 |
|
uzss |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
12 |
10 11
|
syl |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
13 |
12 3
|
sseqtrrdi |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑁 ) ⊆ 𝑍 ) |
14 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ |
15 |
14 10
|
sselid |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
16 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑁 ) = ( ℤ≥ ‘ 𝑁 ) |
17 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
18 |
1 2 15 16 6 17 9
|
clim2d |
⊢ ( 𝜑 → ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑋 ) ) |
19 |
|
nfv |
⊢ Ⅎ 𝑘 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) |
20 |
1 19
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
21 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑋 ) → 𝜑 ) |
22 |
|
uzss |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) → ( ℤ≥ ‘ 𝑗 ) ⊆ ( ℤ≥ ‘ 𝑁 ) ) |
23 |
22
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ℤ≥ ‘ 𝑗 ) ⊆ ( ℤ≥ ‘ 𝑁 ) ) |
24 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
25 |
23 24
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
26 |
25
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑋 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
27 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑋 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑋 ) |
28 |
17 5
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
29 |
28
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑋 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
30 |
|
climcl |
⊢ ( 𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ ) |
31 |
6 30
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝐴 ∈ ℂ ) |
33 |
28
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
34 |
32 33
|
pncan3d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐴 + ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
35 |
34
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐴 + ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) |
36 |
35
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑋 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐴 + ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) |
37 |
36 29
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑋 ) → ( 𝐴 + ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ∈ ℝ ) |
38 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑋 ) → 𝐶 ∈ ℝ ) |
39 |
1 2 16 15 6 5
|
climreclf |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
40 |
39
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑋 ) → 𝐴 ∈ ℝ ) |
41 |
29 40
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ∈ ℝ ) |
42 |
38 41
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑋 ) → ( 𝐶 + ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ∈ ℝ ) |
43 |
9
|
rpred |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
44 |
43
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑋 ) → 𝑋 ∈ ℝ ) |
45 |
38 44
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑋 ) → ( 𝐶 + 𝑋 ) ∈ ℝ ) |
46 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑋 ) → 𝐴 ≤ 𝐶 ) |
47 |
40 38 41 46
|
leadd1dd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑋 ) → ( 𝐴 + ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ≤ ( 𝐶 + ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) |
48 |
33
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑋 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
49 |
32
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑋 ) → 𝐴 ∈ ℂ ) |
50 |
48 49
|
subcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ∈ ℂ ) |
51 |
50
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑋 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ∈ ℝ ) |
52 |
41
|
leabsd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) |
53 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑋 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑋 ) |
54 |
41 51 44 52 53
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) < 𝑋 ) |
55 |
41 44 38 54
|
ltadd2dd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑋 ) → ( 𝐶 + ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < ( 𝐶 + 𝑋 ) ) |
56 |
37 42 45 47 55
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑋 ) → ( 𝐴 + ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < ( 𝐶 + 𝑋 ) ) |
57 |
36 56
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑋 ) → ( 𝐹 ‘ 𝑘 ) < ( 𝐶 + 𝑋 ) ) |
58 |
29 57
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) < ( 𝐶 + 𝑋 ) ) ) |
59 |
21 26 27 58
|
syl21anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) < ( 𝐶 + 𝑋 ) ) ) |
60 |
59
|
adantrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑋 ) ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) < ( 𝐶 + 𝑋 ) ) ) |
61 |
60
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) < ( 𝐶 + 𝑋 ) ) ) ) |
62 |
20 61
|
ralimdaa |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑋 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) < ( 𝐶 + 𝑋 ) ) ) ) |
63 |
62
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑋 ) → ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) < ( 𝐶 + 𝑋 ) ) ) ) |
64 |
18 63
|
mpd |
⊢ ( 𝜑 → ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) < ( 𝐶 + 𝑋 ) ) ) |
65 |
|
ssrexv |
⊢ ( ( ℤ≥ ‘ 𝑁 ) ⊆ 𝑍 → ( ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) < ( 𝐶 + 𝑋 ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) < ( 𝐶 + 𝑋 ) ) ) ) |
66 |
13 64 65
|
sylc |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) < ( 𝐶 + 𝑋 ) ) ) |