Metamath Proof Explorer


Theorem climmo

Description: An infinite sequence of complex numbers converges to at most one limit. (Contributed by Mario Carneiro, 13-Jul-2013)

Ref Expression
Assertion climmo ∃* 𝑥 𝐹𝑥

Proof

Step Hyp Ref Expression
1 breq2 ( 𝑥 = 𝑦 → ( 𝐹𝑥𝐹𝑦 ) )
2 1 cbvexvw ( ∃ 𝑥 𝐹𝑥 ↔ ∃ 𝑦 𝐹𝑦 )
3 climeu ( 𝐹𝑦 → ∃! 𝑥 𝐹𝑥 )
4 3 exlimiv ( ∃ 𝑦 𝐹𝑦 → ∃! 𝑥 𝐹𝑥 )
5 2 4 sylbi ( ∃ 𝑥 𝐹𝑥 → ∃! 𝑥 𝐹𝑥 )
6 moeu ( ∃* 𝑥 𝐹𝑥 ↔ ( ∃ 𝑥 𝐹𝑥 → ∃! 𝑥 𝐹𝑥 ) )
7 5 6 mpbir ∃* 𝑥 𝐹𝑥