| Step | Hyp | Ref | Expression | 
						
							| 1 |  | climmpt2.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | climmpt2.2 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 3 |  | climmpt2.3 | ⊢ ( 𝜑  →  𝐹  ∈  𝑉 ) | 
						
							| 4 |  | climmpt2.5 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 5 |  | eqid | ⊢ ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) )  =  ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 6 | 1 5 | climmpt | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝐹  ∈  𝑉 )  →  ( 𝐹  ⇝  𝐴  ↔  ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) )  ⇝  𝐴 ) ) | 
						
							| 7 | 2 3 6 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹  ⇝  𝐴  ↔  ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) )  ⇝  𝐴 ) ) | 
						
							| 8 | 4 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝑍 ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑘  =  𝑚  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 10 | 9 | eleq1d | ⊢ ( 𝑘  =  𝑚  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ↔  ( 𝐹 ‘ 𝑚 )  ∈  ℂ ) ) | 
						
							| 11 | 10 | cbvralvw | ⊢ ( ∀ 𝑘  ∈  𝑍 ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ↔  ∀ 𝑚  ∈  𝑍 ( 𝐹 ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 12 |  | fveq2 | ⊢ ( 𝑚  =  𝑛  →  ( 𝐹 ‘ 𝑚 )  =  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 13 | 12 | eleq1d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝐹 ‘ 𝑚 )  ∈  ℂ  ↔  ( 𝐹 ‘ 𝑛 )  ∈  ℂ ) ) | 
						
							| 14 | 13 | cbvralvw | ⊢ ( ∀ 𝑚  ∈  𝑍 ( 𝐹 ‘ 𝑚 )  ∈  ℂ  ↔  ∀ 𝑛  ∈  𝑍 ( 𝐹 ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 15 | 11 14 | bitri | ⊢ ( ∀ 𝑘  ∈  𝑍 ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ↔  ∀ 𝑛  ∈  𝑍 ( 𝐹 ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 16 | 8 15 | sylib | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  𝑍 ( 𝐹 ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 17 | 16 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 18 | 17 | fmpttd | ⊢ ( 𝜑  →  ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) : 𝑍 ⟶ ℂ ) | 
						
							| 19 | 1 2 18 | rlimclim | ⊢ ( 𝜑  →  ( ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) )  ⇝𝑟  𝐴  ↔  ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) )  ⇝  𝐴 ) ) | 
						
							| 20 | 7 19 | bitr4d | ⊢ ( 𝜑  →  ( 𝐹  ⇝  𝐴  ↔  ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) )  ⇝𝑟  𝐴 ) ) |