Metamath Proof Explorer


Theorem climmptf

Description: Exhibit a function G with the same convergence properties as the not-quite-function F . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses climmptf.k 𝑘 𝐹
climmptf.m ( 𝜑𝑀 ∈ ℤ )
climmptf.f ( 𝜑𝐹𝑉 )
climmptf.z 𝑍 = ( ℤ𝑀 )
climmptf.g 𝐺 = ( 𝑘𝑍 ↦ ( 𝐹𝑘 ) )
Assertion climmptf ( 𝜑 → ( 𝐹𝐴𝐺𝐴 ) )

Proof

Step Hyp Ref Expression
1 climmptf.k 𝑘 𝐹
2 climmptf.m ( 𝜑𝑀 ∈ ℤ )
3 climmptf.f ( 𝜑𝐹𝑉 )
4 climmptf.z 𝑍 = ( ℤ𝑀 )
5 climmptf.g 𝐺 = ( 𝑘𝑍 ↦ ( 𝐹𝑘 ) )
6 nfcv 𝑗 ( 𝐹𝑘 )
7 nfcv 𝑘 𝑗
8 1 7 nffv 𝑘 ( 𝐹𝑗 )
9 fveq2 ( 𝑘 = 𝑗 → ( 𝐹𝑘 ) = ( 𝐹𝑗 ) )
10 6 8 9 cbvmpt ( 𝑘𝑍 ↦ ( 𝐹𝑘 ) ) = ( 𝑗𝑍 ↦ ( 𝐹𝑗 ) )
11 5 10 eqtri 𝐺 = ( 𝑗𝑍 ↦ ( 𝐹𝑗 ) )
12 4 11 climmpt ( ( 𝑀 ∈ ℤ ∧ 𝐹𝑉 ) → ( 𝐹𝐴𝐺𝐴 ) )
13 2 3 12 syl2anc ( 𝜑 → ( 𝐹𝐴𝐺𝐴 ) )