Description: Exhibit a function G with the same convergence properties as the not-quite-function F . (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | climmptf.k | ⊢ Ⅎ 𝑘 𝐹 | |
climmptf.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
climmptf.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | ||
climmptf.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
climmptf.g | ⊢ 𝐺 = ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) | ||
Assertion | climmptf | ⊢ ( 𝜑 → ( 𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climmptf.k | ⊢ Ⅎ 𝑘 𝐹 | |
2 | climmptf.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
3 | climmptf.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
4 | climmptf.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
5 | climmptf.g | ⊢ 𝐺 = ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) | |
6 | nfcv | ⊢ Ⅎ 𝑗 ( 𝐹 ‘ 𝑘 ) | |
7 | nfcv | ⊢ Ⅎ 𝑘 𝑗 | |
8 | 1 7 | nffv | ⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑗 ) |
9 | fveq2 | ⊢ ( 𝑘 = 𝑗 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑗 ) ) | |
10 | 6 8 9 | cbvmpt | ⊢ ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) = ( 𝑗 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑗 ) ) |
11 | 5 10 | eqtri | ⊢ 𝐺 = ( 𝑗 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑗 ) ) |
12 | 4 11 | climmpt | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) → ( 𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴 ) ) |
13 | 2 3 12 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴 ) ) |