Step |
Hyp |
Ref |
Expression |
1 |
|
climadd.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
climadd.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
climadd.4 |
⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) |
4 |
|
climadd.6 |
⊢ ( 𝜑 → 𝐻 ∈ 𝑋 ) |
5 |
|
climadd.7 |
⊢ ( 𝜑 → 𝐺 ⇝ 𝐵 ) |
6 |
|
climadd.8 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
7 |
|
climadd.9 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
8 |
|
climmul.h |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ 𝑘 ) ) ) |
9 |
|
climcl |
⊢ ( 𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ ) |
10 |
3 9
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
11 |
|
climcl |
⊢ ( 𝐺 ⇝ 𝐵 → 𝐵 ∈ ℂ ) |
12 |
5 11
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
13 |
|
mulcl |
⊢ ( ( 𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ ) → ( 𝑢 · 𝑣 ) ∈ ℂ ) |
14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ ) ) → ( 𝑢 · 𝑣 ) ∈ ℂ ) |
15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ+ ) |
16 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝐴 ∈ ℂ ) |
17 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝐵 ∈ ℂ ) |
18 |
|
mulcn2 |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ∃ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑢 ∈ ℂ ∀ 𝑣 ∈ ℂ ( ( ( abs ‘ ( 𝑢 − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( 𝑢 · 𝑣 ) − ( 𝐴 · 𝐵 ) ) ) < 𝑥 ) ) |
19 |
15 16 17 18
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑢 ∈ ℂ ∀ 𝑣 ∈ ℂ ( ( ( abs ‘ ( 𝑢 − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( 𝑢 · 𝑣 ) − ( 𝐴 · 𝐵 ) ) ) < 𝑥 ) ) |
20 |
1 2 10 12 14 3 5 4 19 6 7 8
|
climcn2 |
⊢ ( 𝜑 → 𝐻 ⇝ ( 𝐴 · 𝐵 ) ) |