Step |
Hyp |
Ref |
Expression |
1 |
|
climmulf.1 |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
climmulf.2 |
⊢ Ⅎ 𝑘 𝐹 |
3 |
|
climmulf.3 |
⊢ Ⅎ 𝑘 𝐺 |
4 |
|
climmulf.4 |
⊢ Ⅎ 𝑘 𝐻 |
5 |
|
climmulf.5 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
6 |
|
climmulf.6 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
7 |
|
climmulf.7 |
⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) |
8 |
|
climmulf.8 |
⊢ ( 𝜑 → 𝐻 ∈ 𝑋 ) |
9 |
|
climmulf.9 |
⊢ ( 𝜑 → 𝐺 ⇝ 𝐵 ) |
10 |
|
climmulf.10 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
11 |
|
climmulf.11 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
12 |
|
climmulf.12 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ 𝑘 ) ) ) |
13 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑗 |
14 |
13
|
nfel1 |
⊢ Ⅎ 𝑘 𝑗 ∈ 𝑍 |
15 |
1 14
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) |
16 |
2 13
|
nffv |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑗 ) |
17 |
16
|
nfel1 |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑗 ) ∈ ℂ |
18 |
15 17
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
19 |
|
eleq1w |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍 ) ) |
20 |
19
|
anbi2d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ↔ ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ) ) |
21 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑗 ) ) |
22 |
21
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ↔ ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) ) |
23 |
20 22
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) ) ) |
24 |
18 23 10
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
25 |
3 13
|
nffv |
⊢ Ⅎ 𝑘 ( 𝐺 ‘ 𝑗 ) |
26 |
25
|
nfel1 |
⊢ Ⅎ 𝑘 ( 𝐺 ‘ 𝑗 ) ∈ ℂ |
27 |
15 26
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑗 ) ∈ ℂ ) |
28 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑗 ) ) |
29 |
28
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐺 ‘ 𝑘 ) ∈ ℂ ↔ ( 𝐺 ‘ 𝑗 ) ∈ ℂ ) ) |
30 |
20 29
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑗 ) ∈ ℂ ) ) ) |
31 |
27 30 11
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑗 ) ∈ ℂ ) |
32 |
4 13
|
nffv |
⊢ Ⅎ 𝑘 ( 𝐻 ‘ 𝑗 ) |
33 |
|
nfcv |
⊢ Ⅎ 𝑘 · |
34 |
16 33 25
|
nfov |
⊢ Ⅎ 𝑘 ( ( 𝐹 ‘ 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) |
35 |
32 34
|
nfeq |
⊢ Ⅎ 𝑘 ( 𝐻 ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) |
36 |
15 35
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) ) |
37 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝐻 ‘ 𝑘 ) = ( 𝐻 ‘ 𝑗 ) ) |
38 |
21 28
|
oveq12d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) ) |
39 |
37 38
|
eqeq12d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ 𝑘 ) ) ↔ ( 𝐻 ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) ) ) |
40 |
20 39
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ 𝑘 ) ) ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
41 |
36 40 12
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) ) |
42 |
5 6 7 8 9 24 31 41
|
climmul |
⊢ ( 𝜑 → 𝐻 ⇝ ( 𝐴 · 𝐵 ) ) |