Metamath Proof Explorer


Theorem climprod1

Description: The limit of a product over one. (Contributed by Scott Fenton, 15-Dec-2017)

Ref Expression
Hypotheses climprod1.1 𝑍 = ( ℤ𝑀 )
climprod1.2 ( 𝜑𝑀 ∈ ℤ )
Assertion climprod1 ( 𝜑 → seq 𝑀 ( · , ( 𝑍 × { 1 } ) ) ⇝ 1 )

Proof

Step Hyp Ref Expression
1 climprod1.1 𝑍 = ( ℤ𝑀 )
2 climprod1.2 ( 𝜑𝑀 ∈ ℤ )
3 1 prodfclim1 ( 𝑀 ∈ ℤ → seq 𝑀 ( · , ( 𝑍 × { 1 } ) ) ⇝ 1 )
4 2 3 syl ( 𝜑 → seq 𝑀 ( · , ( 𝑍 × { 1 } ) ) ⇝ 1 )