Description: The limit of a product over one. (Contributed by Scott Fenton, 15-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | climprod1.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
climprod1.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
Assertion | climprod1 | ⊢ ( 𝜑 → seq 𝑀 ( · , ( 𝑍 × { 1 } ) ) ⇝ 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climprod1.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
2 | climprod1.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
3 | 1 | prodfclim1 | ⊢ ( 𝑀 ∈ ℤ → seq 𝑀 ( · , ( 𝑍 × { 1 } ) ) ⇝ 1 ) |
4 | 2 3 | syl | ⊢ ( 𝜑 → seq 𝑀 ( · , ( 𝑍 × { 1 } ) ) ⇝ 1 ) |