Step |
Hyp |
Ref |
Expression |
1 |
|
climrecf.1 |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
climrecf.2 |
⊢ Ⅎ 𝑘 𝐺 |
3 |
|
climrecf.3 |
⊢ Ⅎ 𝑘 𝐻 |
4 |
|
climrecf.4 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
5 |
|
climrecf.5 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
6 |
|
climrecf.6 |
⊢ ( 𝜑 → 𝐺 ⇝ 𝐴 ) |
7 |
|
climrecf.7 |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
8 |
|
climrecf.8 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ( ℂ ∖ { 0 } ) ) |
9 |
|
climrecf.9 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑘 ) = ( 1 / ( 𝐺 ‘ 𝑘 ) ) ) |
10 |
|
climrecf.10 |
⊢ ( 𝜑 → 𝐻 ∈ 𝑊 ) |
11 |
|
nfv |
⊢ Ⅎ 𝑘 𝑗 ∈ 𝑍 |
12 |
1 11
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) |
13 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑗 |
14 |
2 13
|
nffv |
⊢ Ⅎ 𝑘 ( 𝐺 ‘ 𝑗 ) |
15 |
14
|
nfel1 |
⊢ Ⅎ 𝑘 ( 𝐺 ‘ 𝑗 ) ∈ ( ℂ ∖ { 0 } ) |
16 |
12 15
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑗 ) ∈ ( ℂ ∖ { 0 } ) ) |
17 |
|
eleq1w |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍 ) ) |
18 |
17
|
anbi2d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ↔ ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ) ) |
19 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑗 ) ) |
20 |
19
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐺 ‘ 𝑘 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝐺 ‘ 𝑗 ) ∈ ( ℂ ∖ { 0 } ) ) ) |
21 |
18 20
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ( ℂ ∖ { 0 } ) ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑗 ) ∈ ( ℂ ∖ { 0 } ) ) ) ) |
22 |
16 21 8
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑗 ) ∈ ( ℂ ∖ { 0 } ) ) |
23 |
3 13
|
nffv |
⊢ Ⅎ 𝑘 ( 𝐻 ‘ 𝑗 ) |
24 |
|
nfcv |
⊢ Ⅎ 𝑘 1 |
25 |
|
nfcv |
⊢ Ⅎ 𝑘 / |
26 |
24 25 14
|
nfov |
⊢ Ⅎ 𝑘 ( 1 / ( 𝐺 ‘ 𝑗 ) ) |
27 |
23 26
|
nfeq |
⊢ Ⅎ 𝑘 ( 𝐻 ‘ 𝑗 ) = ( 1 / ( 𝐺 ‘ 𝑗 ) ) |
28 |
12 27
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑗 ) = ( 1 / ( 𝐺 ‘ 𝑗 ) ) ) |
29 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝐻 ‘ 𝑘 ) = ( 𝐻 ‘ 𝑗 ) ) |
30 |
19
|
oveq2d |
⊢ ( 𝑘 = 𝑗 → ( 1 / ( 𝐺 ‘ 𝑘 ) ) = ( 1 / ( 𝐺 ‘ 𝑗 ) ) ) |
31 |
29 30
|
eqeq12d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐻 ‘ 𝑘 ) = ( 1 / ( 𝐺 ‘ 𝑘 ) ) ↔ ( 𝐻 ‘ 𝑗 ) = ( 1 / ( 𝐺 ‘ 𝑗 ) ) ) ) |
32 |
18 31
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑘 ) = ( 1 / ( 𝐺 ‘ 𝑘 ) ) ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑗 ) = ( 1 / ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
33 |
28 32 9
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑗 ) = ( 1 / ( 𝐺 ‘ 𝑗 ) ) ) |
34 |
4 5 6 7 22 33 10
|
climrec |
⊢ ( 𝜑 → 𝐻 ⇝ ( 1 / 𝐴 ) ) |