Metamath Proof Explorer


Theorem climrecf

Description: A version of climrec using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses climrecf.1 𝑘 𝜑
climrecf.2 𝑘 𝐺
climrecf.3 𝑘 𝐻
climrecf.4 𝑍 = ( ℤ𝑀 )
climrecf.5 ( 𝜑𝑀 ∈ ℤ )
climrecf.6 ( 𝜑𝐺𝐴 )
climrecf.7 ( 𝜑𝐴 ≠ 0 )
climrecf.8 ( ( 𝜑𝑘𝑍 ) → ( 𝐺𝑘 ) ∈ ( ℂ ∖ { 0 } ) )
climrecf.9 ( ( 𝜑𝑘𝑍 ) → ( 𝐻𝑘 ) = ( 1 / ( 𝐺𝑘 ) ) )
climrecf.10 ( 𝜑𝐻𝑊 )
Assertion climrecf ( 𝜑𝐻 ⇝ ( 1 / 𝐴 ) )

Proof

Step Hyp Ref Expression
1 climrecf.1 𝑘 𝜑
2 climrecf.2 𝑘 𝐺
3 climrecf.3 𝑘 𝐻
4 climrecf.4 𝑍 = ( ℤ𝑀 )
5 climrecf.5 ( 𝜑𝑀 ∈ ℤ )
6 climrecf.6 ( 𝜑𝐺𝐴 )
7 climrecf.7 ( 𝜑𝐴 ≠ 0 )
8 climrecf.8 ( ( 𝜑𝑘𝑍 ) → ( 𝐺𝑘 ) ∈ ( ℂ ∖ { 0 } ) )
9 climrecf.9 ( ( 𝜑𝑘𝑍 ) → ( 𝐻𝑘 ) = ( 1 / ( 𝐺𝑘 ) ) )
10 climrecf.10 ( 𝜑𝐻𝑊 )
11 nfv 𝑘 𝑗𝑍
12 1 11 nfan 𝑘 ( 𝜑𝑗𝑍 )
13 nfcv 𝑘 𝑗
14 2 13 nffv 𝑘 ( 𝐺𝑗 )
15 14 nfel1 𝑘 ( 𝐺𝑗 ) ∈ ( ℂ ∖ { 0 } )
16 12 15 nfim 𝑘 ( ( 𝜑𝑗𝑍 ) → ( 𝐺𝑗 ) ∈ ( ℂ ∖ { 0 } ) )
17 eleq1w ( 𝑘 = 𝑗 → ( 𝑘𝑍𝑗𝑍 ) )
18 17 anbi2d ( 𝑘 = 𝑗 → ( ( 𝜑𝑘𝑍 ) ↔ ( 𝜑𝑗𝑍 ) ) )
19 fveq2 ( 𝑘 = 𝑗 → ( 𝐺𝑘 ) = ( 𝐺𝑗 ) )
20 19 eleq1d ( 𝑘 = 𝑗 → ( ( 𝐺𝑘 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝐺𝑗 ) ∈ ( ℂ ∖ { 0 } ) ) )
21 18 20 imbi12d ( 𝑘 = 𝑗 → ( ( ( 𝜑𝑘𝑍 ) → ( 𝐺𝑘 ) ∈ ( ℂ ∖ { 0 } ) ) ↔ ( ( 𝜑𝑗𝑍 ) → ( 𝐺𝑗 ) ∈ ( ℂ ∖ { 0 } ) ) ) )
22 16 21 8 chvarfv ( ( 𝜑𝑗𝑍 ) → ( 𝐺𝑗 ) ∈ ( ℂ ∖ { 0 } ) )
23 3 13 nffv 𝑘 ( 𝐻𝑗 )
24 nfcv 𝑘 1
25 nfcv 𝑘 /
26 24 25 14 nfov 𝑘 ( 1 / ( 𝐺𝑗 ) )
27 23 26 nfeq 𝑘 ( 𝐻𝑗 ) = ( 1 / ( 𝐺𝑗 ) )
28 12 27 nfim 𝑘 ( ( 𝜑𝑗𝑍 ) → ( 𝐻𝑗 ) = ( 1 / ( 𝐺𝑗 ) ) )
29 fveq2 ( 𝑘 = 𝑗 → ( 𝐻𝑘 ) = ( 𝐻𝑗 ) )
30 19 oveq2d ( 𝑘 = 𝑗 → ( 1 / ( 𝐺𝑘 ) ) = ( 1 / ( 𝐺𝑗 ) ) )
31 29 30 eqeq12d ( 𝑘 = 𝑗 → ( ( 𝐻𝑘 ) = ( 1 / ( 𝐺𝑘 ) ) ↔ ( 𝐻𝑗 ) = ( 1 / ( 𝐺𝑗 ) ) ) )
32 18 31 imbi12d ( 𝑘 = 𝑗 → ( ( ( 𝜑𝑘𝑍 ) → ( 𝐻𝑘 ) = ( 1 / ( 𝐺𝑘 ) ) ) ↔ ( ( 𝜑𝑗𝑍 ) → ( 𝐻𝑗 ) = ( 1 / ( 𝐺𝑗 ) ) ) ) )
33 28 32 9 chvarfv ( ( 𝜑𝑗𝑍 ) → ( 𝐻𝑗 ) = ( 1 / ( 𝐺𝑗 ) ) )
34 4 5 6 7 22 33 10 climrec ( 𝜑𝐻 ⇝ ( 1 / 𝐴 ) )