| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climshft2.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
climshft2.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 3 |
|
climrecl.3 |
⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) |
| 4 |
|
climrecl.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 5 |
1
|
uzsup |
⊢ ( 𝑀 ∈ ℤ → sup ( 𝑍 , ℝ* , < ) = +∞ ) |
| 6 |
2 5
|
syl |
⊢ ( 𝜑 → sup ( 𝑍 , ℝ* , < ) = +∞ ) |
| 7 |
|
climrel |
⊢ Rel ⇝ |
| 8 |
7
|
brrelex1i |
⊢ ( 𝐹 ⇝ 𝐴 → 𝐹 ∈ V ) |
| 9 |
3 8
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 10 |
|
eqid |
⊢ ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) = ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) |
| 11 |
1 10
|
climmpt |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ V ) → ( 𝐹 ⇝ 𝐴 ↔ ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ⇝ 𝐴 ) ) |
| 12 |
2 9 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ⇝ 𝐴 ↔ ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ⇝ 𝐴 ) ) |
| 13 |
3 12
|
mpbid |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ⇝ 𝐴 ) |
| 14 |
4
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 15 |
14
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) : 𝑍 ⟶ ℂ ) |
| 16 |
1 2 15
|
rlimclim |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ⇝𝑟 𝐴 ↔ ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ⇝ 𝐴 ) ) |
| 17 |
13 16
|
mpbird |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ⇝𝑟 𝐴 ) |
| 18 |
6 17 4
|
rlimrecl |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |