Metamath Proof Explorer


Theorem climrecl

Description: The limit of a convergent real sequence is real. Corollary 12-2.5 of Gleason p. 172. (Contributed by NM, 10-Sep-2005) (Proof shortened by Mario Carneiro, 10-May-2016)

Ref Expression
Hypotheses climshft2.1 𝑍 = ( ℤ𝑀 )
climshft2.2 ( 𝜑𝑀 ∈ ℤ )
climrecl.3 ( 𝜑𝐹𝐴 )
climrecl.4 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℝ )
Assertion climrecl ( 𝜑𝐴 ∈ ℝ )

Proof

Step Hyp Ref Expression
1 climshft2.1 𝑍 = ( ℤ𝑀 )
2 climshft2.2 ( 𝜑𝑀 ∈ ℤ )
3 climrecl.3 ( 𝜑𝐹𝐴 )
4 climrecl.4 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℝ )
5 1 uzsup ( 𝑀 ∈ ℤ → sup ( 𝑍 , ℝ* , < ) = +∞ )
6 2 5 syl ( 𝜑 → sup ( 𝑍 , ℝ* , < ) = +∞ )
7 climrel Rel ⇝
8 7 brrelex1i ( 𝐹𝐴𝐹 ∈ V )
9 3 8 syl ( 𝜑𝐹 ∈ V )
10 eqid ( 𝑘𝑍 ↦ ( 𝐹𝑘 ) ) = ( 𝑘𝑍 ↦ ( 𝐹𝑘 ) )
11 1 10 climmpt ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ V ) → ( 𝐹𝐴 ↔ ( 𝑘𝑍 ↦ ( 𝐹𝑘 ) ) ⇝ 𝐴 ) )
12 2 9 11 syl2anc ( 𝜑 → ( 𝐹𝐴 ↔ ( 𝑘𝑍 ↦ ( 𝐹𝑘 ) ) ⇝ 𝐴 ) )
13 3 12 mpbid ( 𝜑 → ( 𝑘𝑍 ↦ ( 𝐹𝑘 ) ) ⇝ 𝐴 )
14 4 recnd ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℂ )
15 14 fmpttd ( 𝜑 → ( 𝑘𝑍 ↦ ( 𝐹𝑘 ) ) : 𝑍 ⟶ ℂ )
16 1 2 15 rlimclim ( 𝜑 → ( ( 𝑘𝑍 ↦ ( 𝐹𝑘 ) ) ⇝𝑟 𝐴 ↔ ( 𝑘𝑍 ↦ ( 𝐹𝑘 ) ) ⇝ 𝐴 ) )
17 13 16 mpbird ( 𝜑 → ( 𝑘𝑍 ↦ ( 𝐹𝑘 ) ) ⇝𝑟 𝐴 )
18 6 17 4 rlimrecl ( 𝜑𝐴 ∈ ℝ )