| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							climreclf.k | 
							⊢ Ⅎ 𝑘 𝜑  | 
						
						
							| 2 | 
							
								
							 | 
							climreclf.f | 
							⊢ Ⅎ 𝑘 𝐹  | 
						
						
							| 3 | 
							
								
							 | 
							climreclf.z | 
							⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 )  | 
						
						
							| 4 | 
							
								
							 | 
							climreclf.m | 
							⊢ ( 𝜑  →  𝑀  ∈  ℤ )  | 
						
						
							| 5 | 
							
								
							 | 
							climreclf.a | 
							⊢ ( 𝜑  →  𝐹  ⇝  𝐴 )  | 
						
						
							| 6 | 
							
								
							 | 
							climreclf.r | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ )  | 
						
						
							| 7 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑘 𝑗  ∈  𝑍  | 
						
						
							| 8 | 
							
								1 7
							 | 
							nfan | 
							⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑗  ∈  𝑍 )  | 
						
						
							| 9 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑘 𝑗  | 
						
						
							| 10 | 
							
								2 9
							 | 
							nffv | 
							⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑗 )  | 
						
						
							| 11 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑘 ℝ  | 
						
						
							| 12 | 
							
								10 11
							 | 
							nfel | 
							⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑗 )  ∈  ℝ  | 
						
						
							| 13 | 
							
								8 12
							 | 
							nfim | 
							⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑗 )  ∈  ℝ )  | 
						
						
							| 14 | 
							
								
							 | 
							eleq1w | 
							⊢ ( 𝑘  =  𝑗  →  ( 𝑘  ∈  𝑍  ↔  𝑗  ∈  𝑍 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							anbi2d | 
							⊢ ( 𝑘  =  𝑗  →  ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  ↔  ( 𝜑  ∧  𝑗  ∈  𝑍 ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑘  =  𝑗  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑗 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							eleq1d | 
							⊢ ( 𝑘  =  𝑗  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ℝ  ↔  ( 𝐹 ‘ 𝑗 )  ∈  ℝ ) )  | 
						
						
							| 18 | 
							
								15 17
							 | 
							imbi12d | 
							⊢ ( 𝑘  =  𝑗  →  ( ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ )  ↔  ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑗 )  ∈  ℝ ) ) )  | 
						
						
							| 19 | 
							
								13 18 6
							 | 
							chvarfv | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑗 )  ∈  ℝ )  | 
						
						
							| 20 | 
							
								3 4 5 19
							 | 
							climrecl | 
							⊢ ( 𝜑  →  𝐴  ∈  ℝ )  |