Step |
Hyp |
Ref |
Expression |
1 |
|
climreeq.1 |
⊢ 𝑅 = ( ⇝𝑡 ‘ ( topGen ‘ ran (,) ) ) |
2 |
|
climreeq.2 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
climreeq.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
4 |
|
climreeq.4 |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ ) |
5 |
1
|
breqi |
⊢ ( 𝐹 𝑅 𝐴 ↔ 𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran (,) ) ) 𝐴 ) |
6 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
7 |
6
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
8 |
4 7
|
fssd |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℂ ) |
9 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
10 |
9 2
|
lmclimf |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℂ ) → ( 𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 ↔ 𝐹 ⇝ 𝐴 ) ) |
11 |
3 8 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 ↔ 𝐹 ⇝ 𝐴 ) ) |
12 |
9
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
13 |
|
reex |
⊢ ℝ ∈ V |
14 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → ℝ ∈ V ) |
15 |
9
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
16 |
15
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → ( TopOpen ‘ ℂfld ) ∈ Top ) |
17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
18 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → 𝑀 ∈ ℤ ) |
19 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → 𝐹 : 𝑍 ⟶ ℝ ) |
20 |
12 2 14 16 17 18 19
|
lmss |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → ( 𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 ↔ 𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran (,) ) ) 𝐴 ) ) |
21 |
20
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝐴 ∈ ℝ ∧ 𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 ) ↔ ( 𝐴 ∈ ℝ ∧ 𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran (,) ) ) 𝐴 ) ) ) |
22 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 ) → 𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 ) |
23 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 ) → 𝑀 ∈ ℤ ) |
24 |
11
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 ) → 𝐹 ⇝ 𝐴 ) |
25 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) |
26 |
25
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) |
27 |
2 23 24 26
|
climrecl |
⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 ) → 𝐴 ∈ ℝ ) |
28 |
27
|
ex |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 → 𝐴 ∈ ℝ ) ) |
29 |
28
|
ancrd |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 → ( 𝐴 ∈ ℝ ∧ 𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 ) ) ) |
30 |
22 29
|
impbid2 |
⊢ ( 𝜑 → ( ( 𝐴 ∈ ℝ ∧ 𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 ) ↔ 𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 ) ) |
31 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran (,) ) ) 𝐴 ) → 𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran (,) ) ) 𝐴 ) |
32 |
|
retopon |
⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) |
33 |
32
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran (,) ) ) 𝐴 ) → ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) ) |
34 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran (,) ) ) 𝐴 ) → 𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran (,) ) ) 𝐴 ) |
35 |
|
lmcl |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) ∧ 𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran (,) ) ) 𝐴 ) → 𝐴 ∈ ℝ ) |
36 |
33 34 35
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran (,) ) ) 𝐴 ) → 𝐴 ∈ ℝ ) |
37 |
36
|
ex |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran (,) ) ) 𝐴 → 𝐴 ∈ ℝ ) ) |
38 |
37
|
ancrd |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran (,) ) ) 𝐴 → ( 𝐴 ∈ ℝ ∧ 𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran (,) ) ) 𝐴 ) ) ) |
39 |
31 38
|
impbid2 |
⊢ ( 𝜑 → ( ( 𝐴 ∈ ℝ ∧ 𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran (,) ) ) 𝐴 ) ↔ 𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran (,) ) ) 𝐴 ) ) |
40 |
21 30 39
|
3bitr3d |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 ↔ 𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran (,) ) ) 𝐴 ) ) |
41 |
11 40
|
bitr3d |
⊢ ( 𝜑 → ( 𝐹 ⇝ 𝐴 ↔ 𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran (,) ) ) 𝐴 ) ) |
42 |
5 41
|
bitr4id |
⊢ ( 𝜑 → ( 𝐹 𝑅 𝐴 ↔ 𝐹 ⇝ 𝐴 ) ) |