| Step | Hyp | Ref | Expression | 
						
							| 1 |  | climreeq.1 | ⊢ 𝑅  =  ( ⇝𝑡 ‘ ( topGen ‘ ran  (,) ) ) | 
						
							| 2 |  | climreeq.2 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 3 |  | climreeq.3 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 4 |  | climreeq.4 | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ℝ ) | 
						
							| 5 | 1 | breqi | ⊢ ( 𝐹 𝑅 𝐴  ↔  𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran  (,) ) ) 𝐴 ) | 
						
							| 6 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 7 | 6 | a1i | ⊢ ( 𝜑  →  ℝ  ⊆  ℂ ) | 
						
							| 8 | 4 7 | fssd | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ℂ ) | 
						
							| 9 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 10 | 9 2 | lmclimf | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℂ )  →  ( 𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴  ↔  𝐹  ⇝  𝐴 ) ) | 
						
							| 11 | 3 8 10 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴  ↔  𝐹  ⇝  𝐴 ) ) | 
						
							| 12 |  | tgioo4 | ⊢ ( topGen ‘ ran  (,) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) | 
						
							| 13 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 14 | 13 | a1i | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℝ )  →  ℝ  ∈  V ) | 
						
							| 15 | 9 | cnfldtop | ⊢ ( TopOpen ‘ ℂfld )  ∈  Top | 
						
							| 16 | 15 | a1i | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℝ )  →  ( TopOpen ‘ ℂfld )  ∈  Top ) | 
						
							| 17 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℝ )  →  𝐴  ∈  ℝ ) | 
						
							| 18 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℝ )  →  𝑀  ∈  ℤ ) | 
						
							| 19 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℝ )  →  𝐹 : 𝑍 ⟶ ℝ ) | 
						
							| 20 | 12 2 14 16 17 18 19 | lmss | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℝ )  →  ( 𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴  ↔  𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran  (,) ) ) 𝐴 ) ) | 
						
							| 21 | 20 | pm5.32da | ⊢ ( 𝜑  →  ( ( 𝐴  ∈  ℝ  ∧  𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 )  ↔  ( 𝐴  ∈  ℝ  ∧  𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran  (,) ) ) 𝐴 ) ) ) | 
						
							| 22 |  | simpr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 )  →  𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 ) | 
						
							| 23 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 )  →  𝑀  ∈  ℤ ) | 
						
							| 24 | 11 | biimpa | ⊢ ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 )  →  𝐹  ⇝  𝐴 ) | 
						
							| 25 | 4 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 26 | 25 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 )  ∧  𝑛  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 27 | 2 23 24 26 | climrecl | ⊢ ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 )  →  𝐴  ∈  ℝ ) | 
						
							| 28 | 27 | ex | ⊢ ( 𝜑  →  ( 𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴  →  𝐴  ∈  ℝ ) ) | 
						
							| 29 | 28 | ancrd | ⊢ ( 𝜑  →  ( 𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴  →  ( 𝐴  ∈  ℝ  ∧  𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 ) ) ) | 
						
							| 30 | 22 29 | impbid2 | ⊢ ( 𝜑  →  ( ( 𝐴  ∈  ℝ  ∧  𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 )  ↔  𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴 ) ) | 
						
							| 31 |  | simpr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran  (,) ) ) 𝐴 )  →  𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran  (,) ) ) 𝐴 ) | 
						
							| 32 |  | retopon | ⊢ ( topGen ‘ ran  (,) )  ∈  ( TopOn ‘ ℝ ) | 
						
							| 33 | 32 | a1i | ⊢ ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran  (,) ) ) 𝐴 )  →  ( topGen ‘ ran  (,) )  ∈  ( TopOn ‘ ℝ ) ) | 
						
							| 34 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran  (,) ) ) 𝐴 )  →  𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran  (,) ) ) 𝐴 ) | 
						
							| 35 |  | lmcl | ⊢ ( ( ( topGen ‘ ran  (,) )  ∈  ( TopOn ‘ ℝ )  ∧  𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran  (,) ) ) 𝐴 )  →  𝐴  ∈  ℝ ) | 
						
							| 36 | 33 34 35 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran  (,) ) ) 𝐴 )  →  𝐴  ∈  ℝ ) | 
						
							| 37 | 36 | ex | ⊢ ( 𝜑  →  ( 𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran  (,) ) ) 𝐴  →  𝐴  ∈  ℝ ) ) | 
						
							| 38 | 37 | ancrd | ⊢ ( 𝜑  →  ( 𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran  (,) ) ) 𝐴  →  ( 𝐴  ∈  ℝ  ∧  𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran  (,) ) ) 𝐴 ) ) ) | 
						
							| 39 | 31 38 | impbid2 | ⊢ ( 𝜑  →  ( ( 𝐴  ∈  ℝ  ∧  𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran  (,) ) ) 𝐴 )  ↔  𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran  (,) ) ) 𝐴 ) ) | 
						
							| 40 | 21 30 39 | 3bitr3d | ⊢ ( 𝜑  →  ( 𝐹 ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 𝐴  ↔  𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran  (,) ) ) 𝐴 ) ) | 
						
							| 41 | 11 40 | bitr3d | ⊢ ( 𝜑  →  ( 𝐹  ⇝  𝐴  ↔  𝐹 ( ⇝𝑡 ‘ ( topGen ‘ ran  (,) ) ) 𝐴 ) ) | 
						
							| 42 | 5 41 | bitr4id | ⊢ ( 𝜑  →  ( 𝐹 𝑅 𝐴  ↔  𝐹  ⇝  𝐴 ) ) |