Description: The limit relation is a relation. (Contributed by NM, 28-Aug-2005) (Revised by Mario Carneiro, 31-Jan-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | climrel | ⊢ Rel ⇝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clim | ⊢ ⇝ = { 〈 𝑓 , 𝑦 〉 ∣ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) ) < 𝑥 ) ) } | |
2 | 1 | relopabiv | ⊢ Rel ⇝ |