Metamath Proof Explorer


Theorem climres

Description: A function restricted to upper integers converges iff the original function converges. (Contributed by Mario Carneiro, 13-Jul-2013) (Revised by Mario Carneiro, 31-Jan-2014)

Ref Expression
Assertion climres ( ( 𝑀 ∈ ℤ ∧ 𝐹𝑉 ) → ( ( 𝐹 ↾ ( ℤ𝑀 ) ) ⇝ 𝐴𝐹𝐴 ) )

Proof

Step Hyp Ref Expression
1 eqid ( ℤ𝑀 ) = ( ℤ𝑀 )
2 resexg ( 𝐹𝑉 → ( 𝐹 ↾ ( ℤ𝑀 ) ) ∈ V )
3 2 adantl ( ( 𝑀 ∈ ℤ ∧ 𝐹𝑉 ) → ( 𝐹 ↾ ( ℤ𝑀 ) ) ∈ V )
4 simpr ( ( 𝑀 ∈ ℤ ∧ 𝐹𝑉 ) → 𝐹𝑉 )
5 simpl ( ( 𝑀 ∈ ℤ ∧ 𝐹𝑉 ) → 𝑀 ∈ ℤ )
6 fvres ( 𝑘 ∈ ( ℤ𝑀 ) → ( ( 𝐹 ↾ ( ℤ𝑀 ) ) ‘ 𝑘 ) = ( 𝐹𝑘 ) )
7 6 adantl ( ( ( 𝑀 ∈ ℤ ∧ 𝐹𝑉 ) ∧ 𝑘 ∈ ( ℤ𝑀 ) ) → ( ( 𝐹 ↾ ( ℤ𝑀 ) ) ‘ 𝑘 ) = ( 𝐹𝑘 ) )
8 1 3 4 5 7 climeq ( ( 𝑀 ∈ ℤ ∧ 𝐹𝑉 ) → ( ( 𝐹 ↾ ( ℤ𝑀 ) ) ⇝ 𝐴𝐹𝐴 ) )