Description: A function restricted to upper integers converges iff the original function converges. (Contributed by Mario Carneiro, 13-Jul-2013) (Revised by Mario Carneiro, 31-Jan-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | climres | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) | |
2 | resexg | ⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∈ V ) | |
3 | 2 | adantl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∈ V ) |
4 | simpr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) → 𝐹 ∈ 𝑉 ) | |
5 | simpl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) → 𝑀 ∈ ℤ ) | |
6 | fvres | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
7 | 6 | adantl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
8 | 1 3 4 5 7 | climeq | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴 ) ) |