| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							climrescn.m | 
							⊢ ( 𝜑  →  𝑀  ∈  ℤ )  | 
						
						
							| 2 | 
							
								
							 | 
							climrescn.z | 
							⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 )  | 
						
						
							| 3 | 
							
								
							 | 
							climrescn.f | 
							⊢ ( 𝜑  →  𝐹  Fn  𝑍 )  | 
						
						
							| 4 | 
							
								
							 | 
							climrescn.c | 
							⊢ ( 𝜑  →  𝐹  ∈  dom   ⇝  )  | 
						
						
							| 5 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑖  ∈  𝑍 )  | 
						
						
							| 6 | 
							
								
							 | 
							nfra1 | 
							⊢ Ⅎ 𝑘 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  (  ⇝  ‘ 𝐹 ) ) )  <  1 )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							nfan | 
							⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝑖  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  (  ⇝  ‘ 𝐹 ) ) )  <  1 ) )  | 
						
						
							| 8 | 
							
								2
							 | 
							uztrn2 | 
							⊢ ( ( 𝑖  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) )  →  𝑘  ∈  𝑍 )  | 
						
						
							| 9 | 
							
								8
							 | 
							adantll | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) )  →  𝑘  ∈  𝑍 )  | 
						
						
							| 10 | 
							
								3
							 | 
							fndmd | 
							⊢ ( 𝜑  →  dom  𝐹  =  𝑍 )  | 
						
						
							| 11 | 
							
								10
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) )  →  dom  𝐹  =  𝑍 )  | 
						
						
							| 12 | 
							
								9 11
							 | 
							eleqtrrd | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) )  →  𝑘  ∈  dom  𝐹 )  | 
						
						
							| 13 | 
							
								12
							 | 
							adantlr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  (  ⇝  ‘ 𝐹 ) ) )  <  1 ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) )  →  𝑘  ∈  dom  𝐹 )  | 
						
						
							| 14 | 
							
								
							 | 
							rspa | 
							⊢ ( ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  (  ⇝  ‘ 𝐹 ) ) )  <  1 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) )  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  (  ⇝  ‘ 𝐹 ) ) )  <  1 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							adantll | 
							⊢ ( ( ( 𝑖  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  (  ⇝  ‘ 𝐹 ) ) )  <  1 ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) )  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  (  ⇝  ‘ 𝐹 ) ) )  <  1 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							simpld | 
							⊢ ( ( ( 𝑖  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  (  ⇝  ‘ 𝐹 ) ) )  <  1 ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ )  | 
						
						
							| 17 | 
							
								16
							 | 
							adantlll | 
							⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  (  ⇝  ‘ 𝐹 ) ) )  <  1 ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ )  | 
						
						
							| 18 | 
							
								13 17
							 | 
							jca | 
							⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  (  ⇝  ‘ 𝐹 ) ) )  <  1 ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) )  →  ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) )  | 
						
						
							| 19 | 
							
								7 18
							 | 
							ralrimia | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  (  ⇝  ‘ 𝐹 ) ) )  <  1 ) )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) )  | 
						
						
							| 20 | 
							
								
							 | 
							fnfun | 
							⊢ ( 𝐹  Fn  𝑍  →  Fun  𝐹 )  | 
						
						
							| 21 | 
							
								
							 | 
							ffvresb | 
							⊢ ( Fun  𝐹  →  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑖 ) ) : ( ℤ≥ ‘ 𝑖 ) ⟶ ℂ  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) ) )  | 
						
						
							| 22 | 
							
								3 20 21
							 | 
							3syl | 
							⊢ ( 𝜑  →  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑖 ) ) : ( ℤ≥ ‘ 𝑖 ) ⟶ ℂ  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  (  ⇝  ‘ 𝐹 ) ) )  <  1 ) )  →  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑖 ) ) : ( ℤ≥ ‘ 𝑖 ) ⟶ ℂ  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) ) )  | 
						
						
							| 24 | 
							
								19 23
							 | 
							mpbird | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  (  ⇝  ‘ 𝐹 ) ) )  <  1 ) )  →  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑖 ) ) : ( ℤ≥ ‘ 𝑖 ) ⟶ ℂ )  | 
						
						
							| 25 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑥  =  1  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  (  ⇝  ‘ 𝐹 ) ) )  <  𝑥  ↔  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  (  ⇝  ‘ 𝐹 ) ) )  <  1 ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							anbi2d | 
							⊢ ( 𝑥  =  1  →  ( ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  (  ⇝  ‘ 𝐹 ) ) )  <  𝑥 )  ↔  ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  (  ⇝  ‘ 𝐹 ) ) )  <  1 ) ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							rexralbidv | 
							⊢ ( 𝑥  =  1  →  ( ∃ 𝑖  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  (  ⇝  ‘ 𝐹 ) ) )  <  𝑥 )  ↔  ∃ 𝑖  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  (  ⇝  ‘ 𝐹 ) ) )  <  1 ) ) )  | 
						
						
							| 28 | 
							
								
							 | 
							climdm | 
							⊢ ( 𝐹  ∈  dom   ⇝   ↔  𝐹  ⇝  (  ⇝  ‘ 𝐹 ) )  | 
						
						
							| 29 | 
							
								4 28
							 | 
							sylib | 
							⊢ ( 𝜑  →  𝐹  ⇝  (  ⇝  ‘ 𝐹 ) )  | 
						
						
							| 30 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ℤ )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 ) )  | 
						
						
							| 31 | 
							
								4 30
							 | 
							clim | 
							⊢ ( 𝜑  →  ( 𝐹  ⇝  (  ⇝  ‘ 𝐹 )  ↔  ( (  ⇝  ‘ 𝐹 )  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑖  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  (  ⇝  ‘ 𝐹 ) ) )  <  𝑥 ) ) ) )  | 
						
						
							| 32 | 
							
								29 31
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( (  ⇝  ‘ 𝐹 )  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑖  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  (  ⇝  ‘ 𝐹 ) ) )  <  𝑥 ) ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							simprd | 
							⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑖  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  (  ⇝  ‘ 𝐹 ) ) )  <  𝑥 ) )  | 
						
						
							| 34 | 
							
								
							 | 
							1rp | 
							⊢ 1  ∈  ℝ+  | 
						
						
							| 35 | 
							
								34
							 | 
							a1i | 
							⊢ ( 𝜑  →  1  ∈  ℝ+ )  | 
						
						
							| 36 | 
							
								27 33 35
							 | 
							rspcdva | 
							⊢ ( 𝜑  →  ∃ 𝑖  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  (  ⇝  ‘ 𝐹 ) ) )  <  1 ) )  | 
						
						
							| 37 | 
							
								2
							 | 
							rexuz3 | 
							⊢ ( 𝑀  ∈  ℤ  →  ( ∃ 𝑖  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  (  ⇝  ‘ 𝐹 ) ) )  <  1 )  ↔  ∃ 𝑖  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  (  ⇝  ‘ 𝐹 ) ) )  <  1 ) ) )  | 
						
						
							| 38 | 
							
								1 37
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ∃ 𝑖  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  (  ⇝  ‘ 𝐹 ) ) )  <  1 )  ↔  ∃ 𝑖  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  (  ⇝  ‘ 𝐹 ) ) )  <  1 ) ) )  | 
						
						
							| 39 | 
							
								36 38
							 | 
							mpbird | 
							⊢ ( 𝜑  →  ∃ 𝑖  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  (  ⇝  ‘ 𝐹 ) ) )  <  1 ) )  | 
						
						
							| 40 | 
							
								24 39
							 | 
							reximddv3 | 
							⊢ ( 𝜑  →  ∃ 𝑖  ∈  𝑍 ( 𝐹  ↾  ( ℤ≥ ‘ 𝑖 ) ) : ( ℤ≥ ‘ 𝑖 ) ⟶ ℂ )  | 
						
						
							| 41 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑗  =  𝑖  →  ( ℤ≥ ‘ 𝑗 )  =  ( ℤ≥ ‘ 𝑖 ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							reseq2d | 
							⊢ ( 𝑗  =  𝑖  →  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) )  =  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑖 ) ) )  | 
						
						
							| 43 | 
							
								42 41
							 | 
							feq12d | 
							⊢ ( 𝑗  =  𝑖  →  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℂ  ↔  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑖 ) ) : ( ℤ≥ ‘ 𝑖 ) ⟶ ℂ ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							cbvrexvw | 
							⊢ ( ∃ 𝑗  ∈  𝑍 ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℂ  ↔  ∃ 𝑖  ∈  𝑍 ( 𝐹  ↾  ( ℤ≥ ‘ 𝑖 ) ) : ( ℤ≥ ‘ 𝑖 ) ⟶ ℂ )  | 
						
						
							| 45 | 
							
								40 44
							 | 
							sylibr | 
							⊢ ( 𝜑  →  ∃ 𝑗  ∈  𝑍 ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℂ )  |