Metamath Proof Explorer


Theorem climreu

Description: An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 25-Dec-2005)

Ref Expression
Assertion climreu ( 𝐹𝐴 → ∃! 𝑥 ∈ ℂ 𝐹𝑥 )

Proof

Step Hyp Ref Expression
1 climeu ( 𝐹𝐴 → ∃! 𝑥 𝐹𝑥 )
2 climcl ( 𝐹𝑥𝑥 ∈ ℂ )
3 2 pm4.71ri ( 𝐹𝑥 ↔ ( 𝑥 ∈ ℂ ∧ 𝐹𝑥 ) )
4 3 eubii ( ∃! 𝑥 𝐹𝑥 ↔ ∃! 𝑥 ( 𝑥 ∈ ℂ ∧ 𝐹𝑥 ) )
5 df-reu ( ∃! 𝑥 ∈ ℂ 𝐹𝑥 ↔ ∃! 𝑥 ( 𝑥 ∈ ℂ ∧ 𝐹𝑥 ) )
6 4 5 bitr4i ( ∃! 𝑥 𝐹𝑥 ↔ ∃! 𝑥 ∈ ℂ 𝐹𝑥 )
7 1 6 sylib ( 𝐹𝐴 → ∃! 𝑥 ∈ ℂ 𝐹𝑥 )