| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climrlim2.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
climrlim2.2 |
⊢ ( 𝑛 = ( ⌊ ‘ 𝑥 ) → 𝐵 = 𝐶 ) |
| 3 |
|
climrlim2.3 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 4 |
|
climrlim2.4 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 5 |
|
climrlim2.5 |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ⇝ 𝐷 ) |
| 6 |
|
climrlim2.6 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝐵 ∈ ℂ ) |
| 7 |
|
climrlim2.7 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑀 ≤ 𝑥 ) |
| 8 |
|
eluzelz |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑗 ∈ ℤ ) |
| 9 |
8 1
|
eleq2s |
⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ℤ ) |
| 10 |
9
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑗 ≤ 𝑥 ) ) → 𝑗 ∈ ℤ ) |
| 11 |
3
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
| 12 |
11
|
flcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ⌊ ‘ 𝑥 ) ∈ ℤ ) |
| 13 |
12
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐴 ) → ( ⌊ ‘ 𝑥 ) ∈ ℤ ) |
| 14 |
13
|
ad2ant2r |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑗 ≤ 𝑥 ) ) → ( ⌊ ‘ 𝑥 ) ∈ ℤ ) |
| 15 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑗 ≤ 𝑥 ) ) → 𝑗 ≤ 𝑥 ) |
| 16 |
11
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
| 17 |
16
|
ad2ant2r |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑗 ≤ 𝑥 ) ) → 𝑥 ∈ ℝ ) |
| 18 |
|
flge |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑗 ∈ ℤ ) → ( 𝑗 ≤ 𝑥 ↔ 𝑗 ≤ ( ⌊ ‘ 𝑥 ) ) ) |
| 19 |
17 10 18
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑗 ≤ 𝑥 ) ) → ( 𝑗 ≤ 𝑥 ↔ 𝑗 ≤ ( ⌊ ‘ 𝑥 ) ) ) |
| 20 |
15 19
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑗 ≤ 𝑥 ) ) → 𝑗 ≤ ( ⌊ ‘ 𝑥 ) ) |
| 21 |
|
eluz2 |
⊢ ( ( ⌊ ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 𝑗 ) ↔ ( 𝑗 ∈ ℤ ∧ ( ⌊ ‘ 𝑥 ) ∈ ℤ ∧ 𝑗 ≤ ( ⌊ ‘ 𝑥 ) ) ) |
| 22 |
10 14 20 21
|
syl3anbrc |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑗 ≤ 𝑥 ) ) → ( ⌊ ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) |
| 23 |
|
simpr |
⊢ ( ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) − 𝐷 ) ) < 𝑦 ) → ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) − 𝐷 ) ) < 𝑦 ) |
| 24 |
23
|
ralimi |
⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) − 𝐷 ) ) < 𝑦 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) − 𝐷 ) ) < 𝑦 ) |
| 25 |
|
fveq2 |
⊢ ( 𝑘 = ( ⌊ ‘ 𝑥 ) → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) = ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ ( ⌊ ‘ 𝑥 ) ) ) |
| 26 |
25
|
fvoveq1d |
⊢ ( 𝑘 = ( ⌊ ‘ 𝑥 ) → ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) − 𝐷 ) ) = ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝐷 ) ) ) |
| 27 |
26
|
breq1d |
⊢ ( 𝑘 = ( ⌊ ‘ 𝑥 ) → ( ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) − 𝐷 ) ) < 𝑦 ↔ ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝐷 ) ) < 𝑦 ) ) |
| 28 |
27
|
rspcv |
⊢ ( ( ⌊ ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 𝑗 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) − 𝐷 ) ) < 𝑦 → ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝐷 ) ) < 𝑦 ) ) |
| 29 |
22 24 28
|
syl2im |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑗 ≤ 𝑥 ) ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) − 𝐷 ) ) < 𝑦 ) → ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝐷 ) ) < 𝑦 ) ) |
| 30 |
|
eqid |
⊢ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) = ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) |
| 31 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑀 ∈ ℤ ) |
| 32 |
|
flge |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 ≤ 𝑥 ↔ 𝑀 ≤ ( ⌊ ‘ 𝑥 ) ) ) |
| 33 |
11 31 32
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑀 ≤ 𝑥 ↔ 𝑀 ≤ ( ⌊ ‘ 𝑥 ) ) ) |
| 34 |
7 33
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑀 ≤ ( ⌊ ‘ 𝑥 ) ) |
| 35 |
|
eluz2 |
⊢ ( ( ⌊ ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ ( ⌊ ‘ 𝑥 ) ∈ ℤ ∧ 𝑀 ≤ ( ⌊ ‘ 𝑥 ) ) ) |
| 36 |
31 12 34 35
|
syl3anbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ⌊ ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 37 |
36 1
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ⌊ ‘ 𝑥 ) ∈ 𝑍 ) |
| 38 |
2
|
eleq1d |
⊢ ( 𝑛 = ( ⌊ ‘ 𝑥 ) → ( 𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ ) ) |
| 39 |
6
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝑍 𝐵 ∈ ℂ ) |
| 40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑛 ∈ 𝑍 𝐵 ∈ ℂ ) |
| 41 |
38 40 37
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 42 |
30 2 37 41
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ ( ⌊ ‘ 𝑥 ) ) = 𝐶 ) |
| 43 |
42
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ ( ⌊ ‘ 𝑥 ) ) = 𝐶 ) |
| 44 |
43
|
ad2ant2r |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑗 ≤ 𝑥 ) ) → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ ( ⌊ ‘ 𝑥 ) ) = 𝐶 ) |
| 45 |
44
|
fvoveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑗 ≤ 𝑥 ) ) → ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝐷 ) ) = ( abs ‘ ( 𝐶 − 𝐷 ) ) ) |
| 46 |
45
|
breq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑗 ≤ 𝑥 ) ) → ( ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝐷 ) ) < 𝑦 ↔ ( abs ‘ ( 𝐶 − 𝐷 ) ) < 𝑦 ) ) |
| 47 |
29 46
|
sylibd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑗 ≤ 𝑥 ) ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) − 𝐷 ) ) < 𝑦 ) → ( abs ‘ ( 𝐶 − 𝐷 ) ) < 𝑦 ) ) |
| 48 |
47
|
expr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑗 ≤ 𝑥 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) − 𝐷 ) ) < 𝑦 ) → ( abs ‘ ( 𝐶 − 𝐷 ) ) < 𝑦 ) ) ) |
| 49 |
48
|
com23 |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) − 𝐷 ) ) < 𝑦 ) → ( 𝑗 ≤ 𝑥 → ( abs ‘ ( 𝐶 − 𝐷 ) ) < 𝑦 ) ) ) |
| 50 |
49
|
ralrimdva |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) − 𝐷 ) ) < 𝑦 ) → ∀ 𝑥 ∈ 𝐴 ( 𝑗 ≤ 𝑥 → ( abs ‘ ( 𝐶 − 𝐷 ) ) < 𝑦 ) ) ) |
| 51 |
|
eluzelre |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑗 ∈ ℝ ) |
| 52 |
51 1
|
eleq2s |
⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ℝ ) |
| 53 |
52
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ ℝ ) |
| 54 |
50 53
|
jctild |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) − 𝐷 ) ) < 𝑦 ) → ( 𝑗 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑗 ≤ 𝑥 → ( abs ‘ ( 𝐶 − 𝐷 ) ) < 𝑦 ) ) ) ) |
| 55 |
54
|
expimpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) − 𝐷 ) ) < 𝑦 ) ) → ( 𝑗 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑗 ≤ 𝑥 → ( abs ‘ ( 𝐶 − 𝐷 ) ) < 𝑦 ) ) ) ) |
| 56 |
55
|
reximdv2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) − 𝐷 ) ) < 𝑦 ) → ∃ 𝑗 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑗 ≤ 𝑥 → ( abs ‘ ( 𝐶 − 𝐷 ) ) < 𝑦 ) ) ) |
| 57 |
56
|
ralimdva |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) − 𝐷 ) ) < 𝑦 ) → ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑗 ≤ 𝑥 → ( abs ‘ ( 𝐶 − 𝐷 ) ) < 𝑦 ) ) ) |
| 58 |
57
|
adantld |
⊢ ( 𝜑 → ( ( 𝐷 ∈ ℂ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) − 𝐷 ) ) < 𝑦 ) ) → ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑗 ≤ 𝑥 → ( abs ‘ ( 𝐶 − 𝐷 ) ) < 𝑦 ) ) ) |
| 59 |
|
climrel |
⊢ Rel ⇝ |
| 60 |
59
|
brrelex1i |
⊢ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ⇝ 𝐷 → ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ∈ V ) |
| 61 |
5 60
|
syl |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ∈ V ) |
| 62 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) = ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) |
| 63 |
1 4 61 62
|
clim2 |
⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ⇝ 𝐷 ↔ ( 𝐷 ∈ ℂ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) − 𝐷 ) ) < 𝑦 ) ) ) ) |
| 64 |
41
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐶 ∈ ℂ ) |
| 65 |
|
climcl |
⊢ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ⇝ 𝐷 → 𝐷 ∈ ℂ ) |
| 66 |
5 65
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 67 |
64 3 66
|
rlim2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐷 ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑗 ≤ 𝑥 → ( abs ‘ ( 𝐶 − 𝐷 ) ) < 𝑦 ) ) ) |
| 68 |
58 63 67
|
3imtr4d |
⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ⇝ 𝐷 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐷 ) ) |
| 69 |
5 68
|
mpd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐷 ) |