Metamath Proof Explorer


Theorem climshft2

Description: A shifted function converges iff the original function converges. (Contributed by Paul Chapman, 21-Nov-2007) (Revised by Mario Carneiro, 6-Feb-2014)

Ref Expression
Hypotheses climshft2.1 𝑍 = ( ℤ𝑀 )
climshft2.2 ( 𝜑𝑀 ∈ ℤ )
climshft2.3 ( 𝜑𝐾 ∈ ℤ )
climshft2.5 ( 𝜑𝐹𝑊 )
climshft2.6 ( 𝜑𝐺𝑋 )
climshft2.7 ( ( 𝜑𝑘𝑍 ) → ( 𝐺 ‘ ( 𝑘 + 𝐾 ) ) = ( 𝐹𝑘 ) )
Assertion climshft2 ( 𝜑 → ( 𝐹𝐴𝐺𝐴 ) )

Proof

Step Hyp Ref Expression
1 climshft2.1 𝑍 = ( ℤ𝑀 )
2 climshft2.2 ( 𝜑𝑀 ∈ ℤ )
3 climshft2.3 ( 𝜑𝐾 ∈ ℤ )
4 climshft2.5 ( 𝜑𝐹𝑊 )
5 climshft2.6 ( 𝜑𝐺𝑋 )
6 climshft2.7 ( ( 𝜑𝑘𝑍 ) → ( 𝐺 ‘ ( 𝑘 + 𝐾 ) ) = ( 𝐹𝑘 ) )
7 ovexd ( 𝜑 → ( 𝐺 shift - 𝐾 ) ∈ V )
8 3 zcnd ( 𝜑𝐾 ∈ ℂ )
9 eluzelz ( 𝑘 ∈ ( ℤ𝑀 ) → 𝑘 ∈ ℤ )
10 9 1 eleq2s ( 𝑘𝑍𝑘 ∈ ℤ )
11 10 zcnd ( 𝑘𝑍𝑘 ∈ ℂ )
12 fvex ( I ‘ 𝐺 ) ∈ V
13 12 shftval4 ( ( 𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( ( I ‘ 𝐺 ) shift - 𝐾 ) ‘ 𝑘 ) = ( ( I ‘ 𝐺 ) ‘ ( 𝐾 + 𝑘 ) ) )
14 8 11 13 syl2an ( ( 𝜑𝑘𝑍 ) → ( ( ( I ‘ 𝐺 ) shift - 𝐾 ) ‘ 𝑘 ) = ( ( I ‘ 𝐺 ) ‘ ( 𝐾 + 𝑘 ) ) )
15 fvi ( 𝐺𝑋 → ( I ‘ 𝐺 ) = 𝐺 )
16 5 15 syl ( 𝜑 → ( I ‘ 𝐺 ) = 𝐺 )
17 16 adantr ( ( 𝜑𝑘𝑍 ) → ( I ‘ 𝐺 ) = 𝐺 )
18 17 oveq1d ( ( 𝜑𝑘𝑍 ) → ( ( I ‘ 𝐺 ) shift - 𝐾 ) = ( 𝐺 shift - 𝐾 ) )
19 18 fveq1d ( ( 𝜑𝑘𝑍 ) → ( ( ( I ‘ 𝐺 ) shift - 𝐾 ) ‘ 𝑘 ) = ( ( 𝐺 shift - 𝐾 ) ‘ 𝑘 ) )
20 addcom ( ( 𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝐾 + 𝑘 ) = ( 𝑘 + 𝐾 ) )
21 8 11 20 syl2an ( ( 𝜑𝑘𝑍 ) → ( 𝐾 + 𝑘 ) = ( 𝑘 + 𝐾 ) )
22 17 21 fveq12d ( ( 𝜑𝑘𝑍 ) → ( ( I ‘ 𝐺 ) ‘ ( 𝐾 + 𝑘 ) ) = ( 𝐺 ‘ ( 𝑘 + 𝐾 ) ) )
23 14 19 22 3eqtr3d ( ( 𝜑𝑘𝑍 ) → ( ( 𝐺 shift - 𝐾 ) ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑘 + 𝐾 ) ) )
24 23 6 eqtrd ( ( 𝜑𝑘𝑍 ) → ( ( 𝐺 shift - 𝐾 ) ‘ 𝑘 ) = ( 𝐹𝑘 ) )
25 1 7 4 2 24 climeq ( 𝜑 → ( ( 𝐺 shift - 𝐾 ) ⇝ 𝐴𝐹𝐴 ) )
26 3 znegcld ( 𝜑 → - 𝐾 ∈ ℤ )
27 climshft ( ( - 𝐾 ∈ ℤ ∧ 𝐺𝑋 ) → ( ( 𝐺 shift - 𝐾 ) ⇝ 𝐴𝐺𝐴 ) )
28 26 5 27 syl2anc ( 𝜑 → ( ( 𝐺 shift - 𝐾 ) ⇝ 𝐴𝐺𝐴 ) )
29 25 28 bitr3d ( 𝜑 → ( 𝐹𝐴𝐺𝐴 ) )