| Step | Hyp | Ref | Expression | 
						
							| 1 |  | climshft2.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | climshft2.2 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 3 |  | climshft2.3 | ⊢ ( 𝜑  →  𝐾  ∈  ℤ ) | 
						
							| 4 |  | climshft2.5 | ⊢ ( 𝜑  →  𝐹  ∈  𝑊 ) | 
						
							| 5 |  | climshft2.6 | ⊢ ( 𝜑  →  𝐺  ∈  𝑋 ) | 
						
							| 6 |  | climshft2.7 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐺 ‘ ( 𝑘  +  𝐾 ) )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 7 |  | ovexd | ⊢ ( 𝜑  →  ( 𝐺  shift  - 𝐾 )  ∈  V ) | 
						
							| 8 | 3 | zcnd | ⊢ ( 𝜑  →  𝐾  ∈  ℂ ) | 
						
							| 9 |  | eluzelz | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑘  ∈  ℤ ) | 
						
							| 10 | 9 1 | eleq2s | ⊢ ( 𝑘  ∈  𝑍  →  𝑘  ∈  ℤ ) | 
						
							| 11 | 10 | zcnd | ⊢ ( 𝑘  ∈  𝑍  →  𝑘  ∈  ℂ ) | 
						
							| 12 |  | fvex | ⊢ (  I  ‘ 𝐺 )  ∈  V | 
						
							| 13 | 12 | shftval4 | ⊢ ( ( 𝐾  ∈  ℂ  ∧  𝑘  ∈  ℂ )  →  ( ( (  I  ‘ 𝐺 )  shift  - 𝐾 ) ‘ 𝑘 )  =  ( (  I  ‘ 𝐺 ) ‘ ( 𝐾  +  𝑘 ) ) ) | 
						
							| 14 | 8 11 13 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( (  I  ‘ 𝐺 )  shift  - 𝐾 ) ‘ 𝑘 )  =  ( (  I  ‘ 𝐺 ) ‘ ( 𝐾  +  𝑘 ) ) ) | 
						
							| 15 |  | fvi | ⊢ ( 𝐺  ∈  𝑋  →  (  I  ‘ 𝐺 )  =  𝐺 ) | 
						
							| 16 | 5 15 | syl | ⊢ ( 𝜑  →  (  I  ‘ 𝐺 )  =  𝐺 ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  (  I  ‘ 𝐺 )  =  𝐺 ) | 
						
							| 18 | 17 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( (  I  ‘ 𝐺 )  shift  - 𝐾 )  =  ( 𝐺  shift  - 𝐾 ) ) | 
						
							| 19 | 18 | fveq1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( (  I  ‘ 𝐺 )  shift  - 𝐾 ) ‘ 𝑘 )  =  ( ( 𝐺  shift  - 𝐾 ) ‘ 𝑘 ) ) | 
						
							| 20 |  | addcom | ⊢ ( ( 𝐾  ∈  ℂ  ∧  𝑘  ∈  ℂ )  →  ( 𝐾  +  𝑘 )  =  ( 𝑘  +  𝐾 ) ) | 
						
							| 21 | 8 11 20 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐾  +  𝑘 )  =  ( 𝑘  +  𝐾 ) ) | 
						
							| 22 | 17 21 | fveq12d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( (  I  ‘ 𝐺 ) ‘ ( 𝐾  +  𝑘 ) )  =  ( 𝐺 ‘ ( 𝑘  +  𝐾 ) ) ) | 
						
							| 23 | 14 19 22 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝐺  shift  - 𝐾 ) ‘ 𝑘 )  =  ( 𝐺 ‘ ( 𝑘  +  𝐾 ) ) ) | 
						
							| 24 | 23 6 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝐺  shift  - 𝐾 ) ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 25 | 1 7 4 2 24 | climeq | ⊢ ( 𝜑  →  ( ( 𝐺  shift  - 𝐾 )  ⇝  𝐴  ↔  𝐹  ⇝  𝐴 ) ) | 
						
							| 26 | 3 | znegcld | ⊢ ( 𝜑  →  - 𝐾  ∈  ℤ ) | 
						
							| 27 |  | climshft | ⊢ ( ( - 𝐾  ∈  ℤ  ∧  𝐺  ∈  𝑋 )  →  ( ( 𝐺  shift  - 𝐾 )  ⇝  𝐴  ↔  𝐺  ⇝  𝐴 ) ) | 
						
							| 28 | 26 5 27 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐺  shift  - 𝐾 )  ⇝  𝐴  ↔  𝐺  ⇝  𝐴 ) ) | 
						
							| 29 | 25 28 | bitr3d | ⊢ ( 𝜑  →  ( 𝐹  ⇝  𝐴  ↔  𝐺  ⇝  𝐴 ) ) |