| Step | Hyp | Ref | Expression | 
						
							| 1 |  | climshft.1 | ⊢ 𝐹  ∈  V | 
						
							| 2 |  | zaddcl | ⊢ ( ( 𝑘  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( 𝑘  +  𝑀 )  ∈  ℤ ) | 
						
							| 3 | 2 | ancoms | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑘  ∈  ℤ )  →  ( 𝑘  +  𝑀 )  ∈  ℤ ) | 
						
							| 4 |  | eluzsub | ⊢ ( ( 𝑘  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  𝑛  ∈  ( ℤ≥ ‘ ( 𝑘  +  𝑀 ) ) )  →  ( 𝑛  −  𝑀 )  ∈  ( ℤ≥ ‘ 𝑘 ) ) | 
						
							| 5 | 4 | 3com12 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑘  ∈  ℤ  ∧  𝑛  ∈  ( ℤ≥ ‘ ( 𝑘  +  𝑀 ) ) )  →  ( 𝑛  −  𝑀 )  ∈  ( ℤ≥ ‘ 𝑘 ) ) | 
						
							| 6 | 5 | 3expa | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑘  ∈  ℤ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( 𝑘  +  𝑀 ) ) )  →  ( 𝑛  −  𝑀 )  ∈  ( ℤ≥ ‘ 𝑘 ) ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑚  =  ( 𝑛  −  𝑀 )  →  ( 𝐹 ‘ 𝑚 )  =  ( 𝐹 ‘ ( 𝑛  −  𝑀 ) ) ) | 
						
							| 8 | 7 | eleq1d | ⊢ ( 𝑚  =  ( 𝑛  −  𝑀 )  →  ( ( 𝐹 ‘ 𝑚 )  ∈  ℂ  ↔  ( 𝐹 ‘ ( 𝑛  −  𝑀 ) )  ∈  ℂ ) ) | 
						
							| 9 | 7 | fvoveq1d | ⊢ ( 𝑚  =  ( 𝑛  −  𝑀 )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑚 )  −  𝐴 ) )  =  ( abs ‘ ( ( 𝐹 ‘ ( 𝑛  −  𝑀 ) )  −  𝐴 ) ) ) | 
						
							| 10 | 9 | breq1d | ⊢ ( 𝑚  =  ( 𝑛  −  𝑀 )  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑚 )  −  𝐴 ) )  <  𝑥  ↔  ( abs ‘ ( ( 𝐹 ‘ ( 𝑛  −  𝑀 ) )  −  𝐴 ) )  <  𝑥 ) ) | 
						
							| 11 | 8 10 | anbi12d | ⊢ ( 𝑚  =  ( 𝑛  −  𝑀 )  →  ( ( ( 𝐹 ‘ 𝑚 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑚 )  −  𝐴 ) )  <  𝑥 )  ↔  ( ( 𝐹 ‘ ( 𝑛  −  𝑀 ) )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ ( 𝑛  −  𝑀 ) )  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 12 | 11 | rspcv | ⊢ ( ( 𝑛  −  𝑀 )  ∈  ( ℤ≥ ‘ 𝑘 )  →  ( ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑚 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑚 )  −  𝐴 ) )  <  𝑥 )  →  ( ( 𝐹 ‘ ( 𝑛  −  𝑀 ) )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ ( 𝑛  −  𝑀 ) )  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 13 | 6 12 | syl | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑘  ∈  ℤ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( 𝑘  +  𝑀 ) ) )  →  ( ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑚 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑚 )  −  𝐴 ) )  <  𝑥 )  →  ( ( 𝐹 ‘ ( 𝑛  −  𝑀 ) )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ ( 𝑛  −  𝑀 ) )  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 14 |  | zcn | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ℂ ) | 
						
							| 15 |  | eluzelcn | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑘  +  𝑀 ) )  →  𝑛  ∈  ℂ ) | 
						
							| 16 | 1 | shftval | ⊢ ( ( 𝑀  ∈  ℂ  ∧  𝑛  ∈  ℂ )  →  ( ( 𝐹  shift  𝑀 ) ‘ 𝑛 )  =  ( 𝐹 ‘ ( 𝑛  −  𝑀 ) ) ) | 
						
							| 17 | 16 | eleq1d | ⊢ ( ( 𝑀  ∈  ℂ  ∧  𝑛  ∈  ℂ )  →  ( ( ( 𝐹  shift  𝑀 ) ‘ 𝑛 )  ∈  ℂ  ↔  ( 𝐹 ‘ ( 𝑛  −  𝑀 ) )  ∈  ℂ ) ) | 
						
							| 18 | 16 | fvoveq1d | ⊢ ( ( 𝑀  ∈  ℂ  ∧  𝑛  ∈  ℂ )  →  ( abs ‘ ( ( ( 𝐹  shift  𝑀 ) ‘ 𝑛 )  −  𝐴 ) )  =  ( abs ‘ ( ( 𝐹 ‘ ( 𝑛  −  𝑀 ) )  −  𝐴 ) ) ) | 
						
							| 19 | 18 | breq1d | ⊢ ( ( 𝑀  ∈  ℂ  ∧  𝑛  ∈  ℂ )  →  ( ( abs ‘ ( ( ( 𝐹  shift  𝑀 ) ‘ 𝑛 )  −  𝐴 ) )  <  𝑥  ↔  ( abs ‘ ( ( 𝐹 ‘ ( 𝑛  −  𝑀 ) )  −  𝐴 ) )  <  𝑥 ) ) | 
						
							| 20 | 17 19 | anbi12d | ⊢ ( ( 𝑀  ∈  ℂ  ∧  𝑛  ∈  ℂ )  →  ( ( ( ( 𝐹  shift  𝑀 ) ‘ 𝑛 )  ∈  ℂ  ∧  ( abs ‘ ( ( ( 𝐹  shift  𝑀 ) ‘ 𝑛 )  −  𝐴 ) )  <  𝑥 )  ↔  ( ( 𝐹 ‘ ( 𝑛  −  𝑀 ) )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ ( 𝑛  −  𝑀 ) )  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 21 | 14 15 20 | syl2an | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑛  ∈  ( ℤ≥ ‘ ( 𝑘  +  𝑀 ) ) )  →  ( ( ( ( 𝐹  shift  𝑀 ) ‘ 𝑛 )  ∈  ℂ  ∧  ( abs ‘ ( ( ( 𝐹  shift  𝑀 ) ‘ 𝑛 )  −  𝐴 ) )  <  𝑥 )  ↔  ( ( 𝐹 ‘ ( 𝑛  −  𝑀 ) )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ ( 𝑛  −  𝑀 ) )  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 22 | 21 | adantlr | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑘  ∈  ℤ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( 𝑘  +  𝑀 ) ) )  →  ( ( ( ( 𝐹  shift  𝑀 ) ‘ 𝑛 )  ∈  ℂ  ∧  ( abs ‘ ( ( ( 𝐹  shift  𝑀 ) ‘ 𝑛 )  −  𝐴 ) )  <  𝑥 )  ↔  ( ( 𝐹 ‘ ( 𝑛  −  𝑀 ) )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ ( 𝑛  −  𝑀 ) )  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 23 | 13 22 | sylibrd | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑘  ∈  ℤ )  ∧  𝑛  ∈  ( ℤ≥ ‘ ( 𝑘  +  𝑀 ) ) )  →  ( ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑚 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑚 )  −  𝐴 ) )  <  𝑥 )  →  ( ( ( 𝐹  shift  𝑀 ) ‘ 𝑛 )  ∈  ℂ  ∧  ( abs ‘ ( ( ( 𝐹  shift  𝑀 ) ‘ 𝑛 )  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 24 | 23 | ralrimdva | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑘  ∈  ℤ )  →  ( ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑚 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑚 )  −  𝐴 ) )  <  𝑥 )  →  ∀ 𝑛  ∈  ( ℤ≥ ‘ ( 𝑘  +  𝑀 ) ) ( ( ( 𝐹  shift  𝑀 ) ‘ 𝑛 )  ∈  ℂ  ∧  ( abs ‘ ( ( ( 𝐹  shift  𝑀 ) ‘ 𝑛 )  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 25 |  | fveq2 | ⊢ ( 𝑚  =  ( 𝑘  +  𝑀 )  →  ( ℤ≥ ‘ 𝑚 )  =  ( ℤ≥ ‘ ( 𝑘  +  𝑀 ) ) ) | 
						
							| 26 | 25 | raleqdv | ⊢ ( 𝑚  =  ( 𝑘  +  𝑀 )  →  ( ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( ( 𝐹  shift  𝑀 ) ‘ 𝑛 )  ∈  ℂ  ∧  ( abs ‘ ( ( ( 𝐹  shift  𝑀 ) ‘ 𝑛 )  −  𝐴 ) )  <  𝑥 )  ↔  ∀ 𝑛  ∈  ( ℤ≥ ‘ ( 𝑘  +  𝑀 ) ) ( ( ( 𝐹  shift  𝑀 ) ‘ 𝑛 )  ∈  ℂ  ∧  ( abs ‘ ( ( ( 𝐹  shift  𝑀 ) ‘ 𝑛 )  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 27 | 26 | rspcev | ⊢ ( ( ( 𝑘  +  𝑀 )  ∈  ℤ  ∧  ∀ 𝑛  ∈  ( ℤ≥ ‘ ( 𝑘  +  𝑀 ) ) ( ( ( 𝐹  shift  𝑀 ) ‘ 𝑛 )  ∈  ℂ  ∧  ( abs ‘ ( ( ( 𝐹  shift  𝑀 ) ‘ 𝑛 )  −  𝐴 ) )  <  𝑥 ) )  →  ∃ 𝑚  ∈  ℤ ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( ( 𝐹  shift  𝑀 ) ‘ 𝑛 )  ∈  ℂ  ∧  ( abs ‘ ( ( ( 𝐹  shift  𝑀 ) ‘ 𝑛 )  −  𝐴 ) )  <  𝑥 ) ) | 
						
							| 28 | 3 24 27 | syl6an | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑘  ∈  ℤ )  →  ( ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑚 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑚 )  −  𝐴 ) )  <  𝑥 )  →  ∃ 𝑚  ∈  ℤ ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( ( 𝐹  shift  𝑀 ) ‘ 𝑛 )  ∈  ℂ  ∧  ( abs ‘ ( ( ( 𝐹  shift  𝑀 ) ‘ 𝑛 )  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 29 | 28 | rexlimdva | ⊢ ( 𝑀  ∈  ℤ  →  ( ∃ 𝑘  ∈  ℤ ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑚 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑚 )  −  𝐴 ) )  <  𝑥 )  →  ∃ 𝑚  ∈  ℤ ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( ( 𝐹  shift  𝑀 ) ‘ 𝑛 )  ∈  ℂ  ∧  ( abs ‘ ( ( ( 𝐹  shift  𝑀 ) ‘ 𝑛 )  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 30 | 29 | ralimdv | ⊢ ( 𝑀  ∈  ℤ  →  ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑘  ∈  ℤ ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑚 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑚 )  −  𝐴 ) )  <  𝑥 )  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑚  ∈  ℤ ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( ( 𝐹  shift  𝑀 ) ‘ 𝑛 )  ∈  ℂ  ∧  ( abs ‘ ( ( ( 𝐹  shift  𝑀 ) ‘ 𝑛 )  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 31 | 30 | anim2d | ⊢ ( 𝑀  ∈  ℤ  →  ( ( 𝐴  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑘  ∈  ℤ ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑚 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑚 )  −  𝐴 ) )  <  𝑥 ) )  →  ( 𝐴  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑚  ∈  ℤ ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( ( 𝐹  shift  𝑀 ) ‘ 𝑛 )  ∈  ℂ  ∧  ( abs ‘ ( ( ( 𝐹  shift  𝑀 ) ‘ 𝑛 )  −  𝐴 ) )  <  𝑥 ) ) ) ) | 
						
							| 32 | 1 | a1i | ⊢ ( 𝑀  ∈  ℤ  →  𝐹  ∈  V ) | 
						
							| 33 |  | eqidd | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑚  ∈  ℤ )  →  ( 𝐹 ‘ 𝑚 )  =  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 34 | 32 33 | clim | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝐹  ⇝  𝐴  ↔  ( 𝐴  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑘  ∈  ℤ ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑚 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑚 )  −  𝐴 ) )  <  𝑥 ) ) ) ) | 
						
							| 35 |  | ovexd | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝐹  shift  𝑀 )  ∈  V ) | 
						
							| 36 |  | eqidd | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑛  ∈  ℤ )  →  ( ( 𝐹  shift  𝑀 ) ‘ 𝑛 )  =  ( ( 𝐹  shift  𝑀 ) ‘ 𝑛 ) ) | 
						
							| 37 | 35 36 | clim | ⊢ ( 𝑀  ∈  ℤ  →  ( ( 𝐹  shift  𝑀 )  ⇝  𝐴  ↔  ( 𝐴  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑚  ∈  ℤ ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ( ( ( 𝐹  shift  𝑀 ) ‘ 𝑛 )  ∈  ℂ  ∧  ( abs ‘ ( ( ( 𝐹  shift  𝑀 ) ‘ 𝑛 )  −  𝐴 ) )  <  𝑥 ) ) ) ) | 
						
							| 38 | 31 34 37 | 3imtr4d | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝐹  ⇝  𝐴  →  ( 𝐹  shift  𝑀 )  ⇝  𝐴 ) ) |