Step |
Hyp |
Ref |
Expression |
1 |
|
climadd.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
climadd.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
climadd.4 |
⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) |
4 |
|
climsqz.5 |
⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) |
5 |
|
climsqz.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
6 |
|
climsqz.7 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
7 |
|
climsqz.8 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐺 ‘ 𝑘 ) ) |
8 |
|
climsqz.9 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ≤ 𝐴 ) |
9 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑀 ∈ ℤ ) |
10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ+ ) |
11 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
12 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝐹 ⇝ 𝐴 ) |
13 |
1 9 10 11 12
|
climi2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) |
14 |
1
|
uztrn2 |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
15 |
1 2 3 5
|
climrecl |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℝ ) |
17 |
5 6 16 7
|
lesub2dd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐴 − ( 𝐺 ‘ 𝑘 ) ) ≤ ( 𝐴 − ( 𝐹 ‘ 𝑘 ) ) ) |
18 |
6 16 8
|
abssuble0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) = ( 𝐴 − ( 𝐺 ‘ 𝑘 ) ) ) |
19 |
5 6 16 7 8
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ≤ 𝐴 ) |
20 |
5 16 19
|
abssuble0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) = ( 𝐴 − ( 𝐹 ‘ 𝑘 ) ) ) |
21 |
17 18 20
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) |
22 |
21
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) |
23 |
6
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
24 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℝ ) |
25 |
23 24
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ∈ ℝ ) |
26 |
25
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ∈ ℂ ) |
27 |
26
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) ∈ ℝ ) |
28 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
29 |
28 24
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ∈ ℝ ) |
30 |
29
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ∈ ℂ ) |
31 |
30
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ∈ ℝ ) |
32 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
33 |
32
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → 𝑥 ∈ ℝ ) |
34 |
|
lelttr |
⊢ ( ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) ∈ ℝ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) |
35 |
27 31 33 34
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) |
36 |
22 35
|
mpand |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 → ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) |
37 |
14 36
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 → ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) |
38 |
37
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 → ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) |
39 |
38
|
ralimdva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) |
40 |
39
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) |
41 |
13 40
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) |
42 |
41
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) |
43 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
44 |
15
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
45 |
6
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
46 |
1 2 4 43 44 45
|
clim2c |
⊢ ( 𝜑 → ( 𝐺 ⇝ 𝐴 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) |
47 |
42 46
|
mpbird |
⊢ ( 𝜑 → 𝐺 ⇝ 𝐴 ) |