Metamath Proof Explorer


Theorem climsubc1mpt

Description: Limit of the difference of two converging sequences. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses climsubc1mpt.k 𝑘 𝜑
climsubc1mpt.z 𝑍 = ( ℤ𝑀 )
climsubc1mpt.m ( 𝜑𝑀 ∈ ℤ )
climsubc1mpt.b ( 𝜑𝐴 ∈ ℂ )
climsubc1mpt.a ( ( 𝜑𝑘𝑍 ) → 𝐵 ∈ ℂ )
climsubc1mpt.c ( 𝜑 → ( 𝑘𝑍𝐵 ) ⇝ 𝐶 )
Assertion climsubc1mpt ( 𝜑 → ( 𝑘𝑍 ↦ ( 𝐴𝐵 ) ) ⇝ ( 𝐴𝐶 ) )

Proof

Step Hyp Ref Expression
1 climsubc1mpt.k 𝑘 𝜑
2 climsubc1mpt.z 𝑍 = ( ℤ𝑀 )
3 climsubc1mpt.m ( 𝜑𝑀 ∈ ℤ )
4 climsubc1mpt.b ( 𝜑𝐴 ∈ ℂ )
5 climsubc1mpt.a ( ( 𝜑𝑘𝑍 ) → 𝐵 ∈ ℂ )
6 climsubc1mpt.c ( 𝜑 → ( 𝑘𝑍𝐵 ) ⇝ 𝐶 )
7 4 adantr ( ( 𝜑𝑘𝑍 ) → 𝐴 ∈ ℂ )
8 3 2 4 climconstmpt ( 𝜑 → ( 𝑘𝑍𝐴 ) ⇝ 𝐴 )
9 1 2 3 7 5 8 6 climsubmpt ( 𝜑 → ( 𝑘𝑍 ↦ ( 𝐴𝐵 ) ) ⇝ ( 𝐴𝐶 ) )