Metamath Proof Explorer


Theorem climsubc2mpt

Description: Limit of the difference of two converging sequences. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses climsubc2mpt.k 𝑘 𝜑
climsubc2mpt.z 𝑍 = ( ℤ𝑀 )
climsubc2mpt.m ( 𝜑𝑀 ∈ ℤ )
climsubc2mpt.a ( ( 𝜑𝑘𝑍 ) → 𝐴 ∈ ℂ )
climsubc2mpt.c ( 𝜑 → ( 𝑘𝑍𝐴 ) ⇝ 𝐶 )
climsubc2mpt.b ( 𝜑𝐵 ∈ ℂ )
Assertion climsubc2mpt ( 𝜑 → ( 𝑘𝑍 ↦ ( 𝐴𝐵 ) ) ⇝ ( 𝐶𝐵 ) )

Proof

Step Hyp Ref Expression
1 climsubc2mpt.k 𝑘 𝜑
2 climsubc2mpt.z 𝑍 = ( ℤ𝑀 )
3 climsubc2mpt.m ( 𝜑𝑀 ∈ ℤ )
4 climsubc2mpt.a ( ( 𝜑𝑘𝑍 ) → 𝐴 ∈ ℂ )
5 climsubc2mpt.c ( 𝜑 → ( 𝑘𝑍𝐴 ) ⇝ 𝐶 )
6 climsubc2mpt.b ( 𝜑𝐵 ∈ ℂ )
7 6 adantr ( ( 𝜑𝑘𝑍 ) → 𝐵 ∈ ℂ )
8 3 2 6 climconstmpt ( 𝜑 → ( 𝑘𝑍𝐵 ) ⇝ 𝐵 )
9 1 2 3 4 7 5 8 climsubmpt ( 𝜑 → ( 𝑘𝑍 ↦ ( 𝐴𝐵 ) ) ⇝ ( 𝐶𝐵 ) )