Description: Limit of the difference of two converging sequences. (Contributed by Glauco Siliprandi, 8-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | climsubc2mpt.k | ⊢ Ⅎ 𝑘 𝜑 | |
climsubc2mpt.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
climsubc2mpt.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
climsubc2mpt.a | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) | ||
climsubc2mpt.c | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ⇝ 𝐶 ) | ||
climsubc2mpt.b | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
Assertion | climsubc2mpt | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 − 𝐵 ) ) ⇝ ( 𝐶 − 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climsubc2mpt.k | ⊢ Ⅎ 𝑘 𝜑 | |
2 | climsubc2mpt.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
3 | climsubc2mpt.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
4 | climsubc2mpt.a | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) | |
5 | climsubc2mpt.c | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ⇝ 𝐶 ) | |
6 | climsubc2mpt.b | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
7 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℂ ) |
8 | 3 2 6 | climconstmpt | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ⇝ 𝐵 ) |
9 | 1 2 3 4 7 5 8 | climsubmpt | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 − 𝐵 ) ) ⇝ ( 𝐶 − 𝐵 ) ) |