Step |
Hyp |
Ref |
Expression |
1 |
|
climsup.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
climsup.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
climsup.3 |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ ) |
4 |
|
climsup.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
5 |
|
climsup.5 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) |
6 |
3
|
frnd |
⊢ ( 𝜑 → ran 𝐹 ⊆ ℝ ) |
7 |
3
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝑍 ) |
8 |
|
uzid |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
9 |
2 8
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
10 |
9 1
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
11 |
|
fnfvelrn |
⊢ ( ( 𝐹 Fn 𝑍 ∧ 𝑀 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑀 ) ∈ ran 𝐹 ) |
12 |
7 10 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ ran 𝐹 ) |
13 |
12
|
ne0d |
⊢ ( 𝜑 → ran 𝐹 ≠ ∅ ) |
14 |
|
breq1 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑘 ) → ( 𝑦 ≤ 𝑥 ↔ ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ) |
15 |
14
|
ralrn |
⊢ ( 𝐹 Fn 𝑍 → ( ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ↔ ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ) |
16 |
15
|
rexbidv |
⊢ ( 𝐹 Fn 𝑍 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ) |
17 |
7 16
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ) |
18 |
5 17
|
mpbird |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) |
19 |
6 13 18
|
3jca |
⊢ ( 𝜑 → ( ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ) |
20 |
|
suprcl |
⊢ ( ( ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → sup ( ran 𝐹 , ℝ , < ) ∈ ℝ ) |
21 |
19 20
|
syl |
⊢ ( 𝜑 → sup ( ran 𝐹 , ℝ , < ) ∈ ℝ ) |
22 |
|
ltsubrp |
⊢ ( ( sup ( ran 𝐹 , ℝ , < ) ∈ ℝ ∧ 𝑦 ∈ ℝ+ ) → ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < sup ( ran 𝐹 , ℝ , < ) ) |
23 |
21 22
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < sup ( ran 𝐹 , ℝ , < ) ) |
24 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ) |
25 |
|
rpre |
⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ ) |
26 |
|
resubcl |
⊢ ( ( sup ( ran 𝐹 , ℝ , < ) ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) ∈ ℝ ) |
27 |
21 25 26
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) ∈ ℝ ) |
28 |
|
suprlub |
⊢ ( ( ( ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) ∈ ℝ ) → ( ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < sup ( ran 𝐹 , ℝ , < ) ↔ ∃ 𝑘 ∈ ran 𝐹 ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < 𝑘 ) ) |
29 |
24 27 28
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < sup ( ran 𝐹 , ℝ , < ) ↔ ∃ 𝑘 ∈ ran 𝐹 ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < 𝑘 ) ) |
30 |
23 29
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑘 ∈ ran 𝐹 ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < 𝑘 ) |
31 |
|
breq2 |
⊢ ( 𝑘 = ( 𝐹 ‘ 𝑗 ) → ( ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < 𝑘 ↔ ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < ( 𝐹 ‘ 𝑗 ) ) ) |
32 |
31
|
rexrn |
⊢ ( 𝐹 Fn 𝑍 → ( ∃ 𝑘 ∈ ran 𝐹 ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < 𝑘 ↔ ∃ 𝑗 ∈ 𝑍 ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < ( 𝐹 ‘ 𝑗 ) ) ) |
33 |
7 32
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ran 𝐹 ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < 𝑘 ↔ ∃ 𝑗 ∈ 𝑍 ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < ( 𝐹 ‘ 𝑗 ) ) ) |
34 |
33
|
biimpa |
⊢ ( ( 𝜑 ∧ ∃ 𝑘 ∈ ran 𝐹 ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < 𝑘 ) → ∃ 𝑗 ∈ 𝑍 ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < ( 𝐹 ‘ 𝑗 ) ) |
35 |
30 34
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < ( 𝐹 ‘ 𝑗 ) ) |
36 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝑍 ⟶ ℝ ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) |
37 |
3 36
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) |
38 |
37
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) |
39 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝐹 : 𝑍 ⟶ ℝ ) |
40 |
1
|
uztrn2 |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
41 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝑍 ⟶ ℝ ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
42 |
39 40 41
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
43 |
21
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → sup ( ran 𝐹 , ℝ , < ) ∈ ℝ ) |
44 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
45 |
|
fzssuz |
⊢ ( 𝑗 ... 𝑘 ) ⊆ ( ℤ≥ ‘ 𝑗 ) |
46 |
|
uzss |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝑗 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
47 |
46 1
|
sseqtrrdi |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝑗 ) ⊆ 𝑍 ) |
48 |
47 1
|
eleq2s |
⊢ ( 𝑗 ∈ 𝑍 → ( ℤ≥ ‘ 𝑗 ) ⊆ 𝑍 ) |
49 |
48
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ℤ≥ ‘ 𝑗 ) ⊆ 𝑍 ) |
50 |
45 49
|
sstrid |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑗 ... 𝑘 ) ⊆ 𝑍 ) |
51 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝑍 ⟶ ℝ ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) |
52 |
51
|
ralrimiva |
⊢ ( 𝐹 : 𝑍 ⟶ ℝ → ∀ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) |
53 |
3 52
|
syl |
⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) |
54 |
53
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ∀ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) |
55 |
|
ssralv |
⊢ ( ( 𝑗 ... 𝑘 ) ⊆ 𝑍 → ( ∀ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ∈ ℝ → ∀ 𝑛 ∈ ( 𝑗 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) ) |
56 |
50 54 55
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ∀ 𝑛 ∈ ( 𝑗 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) |
57 |
56
|
r19.21bi |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑛 ∈ ( 𝑗 ... 𝑘 ) ) → ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) |
58 |
|
fzssuz |
⊢ ( 𝑗 ... ( 𝑘 − 1 ) ) ⊆ ( ℤ≥ ‘ 𝑗 ) |
59 |
58 49
|
sstrid |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑗 ... ( 𝑘 − 1 ) ) ⊆ 𝑍 ) |
60 |
59
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑛 ∈ ( 𝑗 ... ( 𝑘 − 1 ) ) ) → 𝑛 ∈ 𝑍 ) |
61 |
4
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
62 |
61
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
63 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑛 ) ) |
64 |
|
fvoveq1 |
⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
65 |
63 64
|
breq12d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ↔ ( 𝐹 ‘ 𝑛 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
66 |
65
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
67 |
62 66
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
68 |
60 67
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑛 ∈ ( 𝑗 ... ( 𝑘 − 1 ) ) ) → ( 𝐹 ‘ 𝑛 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
69 |
44 57 68
|
monoord |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑗 ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
70 |
38 42 43 69
|
lesub2dd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑘 ) ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑗 ) ) ) |
71 |
43 42
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
72 |
43 38
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑗 ) ) ∈ ℝ ) |
73 |
25
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑦 ∈ ℝ ) |
74 |
|
lelttr |
⊢ ( ( ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ∧ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑗 ) ) ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑘 ) ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑗 ) ) ∧ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑗 ) ) < 𝑦 ) → ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑘 ) ) < 𝑦 ) ) |
75 |
71 72 73 74
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑘 ) ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑗 ) ) ∧ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑗 ) ) < 𝑦 ) → ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑘 ) ) < 𝑦 ) ) |
76 |
70 75
|
mpand |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑗 ) ) < 𝑦 → ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑘 ) ) < 𝑦 ) ) |
77 |
|
ltsub23 |
⊢ ( ( sup ( ran 𝐹 , ℝ , < ) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) → ( ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < ( 𝐹 ‘ 𝑗 ) ↔ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑗 ) ) < 𝑦 ) ) |
78 |
43 73 38 77
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < ( 𝐹 ‘ 𝑗 ) ↔ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑗 ) ) < 𝑦 ) ) |
79 |
19
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ) |
80 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝐹 Fn 𝑍 ) |
81 |
|
fnfvelrn |
⊢ ( ( 𝐹 Fn 𝑍 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ran 𝐹 ) |
82 |
80 40 81
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ran 𝐹 ) |
83 |
|
suprub |
⊢ ( ( ( ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ran 𝐹 ) → ( 𝐹 ‘ 𝑘 ) ≤ sup ( ran 𝐹 , ℝ , < ) ) |
84 |
79 82 83
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑘 ) ≤ sup ( ran 𝐹 , ℝ , < ) ) |
85 |
42 43 84
|
abssuble0d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − sup ( ran 𝐹 , ℝ , < ) ) ) = ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑘 ) ) ) |
86 |
85
|
breq1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − sup ( ran 𝐹 , ℝ , < ) ) ) < 𝑦 ↔ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑘 ) ) < 𝑦 ) ) |
87 |
76 78 86
|
3imtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < ( 𝐹 ‘ 𝑗 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − sup ( ran 𝐹 , ℝ , < ) ) ) < 𝑦 ) ) |
88 |
87
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < ( 𝐹 ‘ 𝑗 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − sup ( ran 𝐹 , ℝ , < ) ) ) < 𝑦 ) ) |
89 |
88
|
ralrimdva |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < ( 𝐹 ‘ 𝑗 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − sup ( ran 𝐹 , ℝ , < ) ) ) < 𝑦 ) ) |
90 |
89
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ 𝑍 ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < ( 𝐹 ‘ 𝑗 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − sup ( ran 𝐹 , ℝ , < ) ) ) < 𝑦 ) ) |
91 |
35 90
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − sup ( ran 𝐹 , ℝ , < ) ) ) < 𝑦 ) |
92 |
91
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − sup ( ran 𝐹 , ℝ , < ) ) ) < 𝑦 ) |
93 |
1
|
fvexi |
⊢ 𝑍 ∈ V |
94 |
|
fex |
⊢ ( ( 𝐹 : 𝑍 ⟶ ℝ ∧ 𝑍 ∈ V ) → 𝐹 ∈ V ) |
95 |
3 93 94
|
sylancl |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
96 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
97 |
21
|
recnd |
⊢ ( 𝜑 → sup ( ran 𝐹 , ℝ , < ) ∈ ℂ ) |
98 |
3 41
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
99 |
98
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
100 |
1 2 95 96 97 99
|
clim2c |
⊢ ( 𝜑 → ( 𝐹 ⇝ sup ( ran 𝐹 , ℝ , < ) ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − sup ( ran 𝐹 , ℝ , < ) ) ) < 𝑦 ) ) |
101 |
92 100
|
mpbird |
⊢ ( 𝜑 → 𝐹 ⇝ sup ( ran 𝐹 , ℝ , < ) ) |