Step |
Hyp |
Ref |
Expression |
1 |
|
climsuselem1.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
climsuselem1.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
climsuselem1.3 |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑀 ) ∈ 𝑍 ) |
4 |
|
climsuselem1.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐼 ‘ ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝑘 ) + 1 ) ) ) |
5 |
1
|
eleq2i |
⊢ ( 𝐾 ∈ 𝑍 ↔ 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
6 |
5
|
biimpi |
⊢ ( 𝐾 ∈ 𝑍 → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ 𝑍 ) → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
8 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ 𝑍 ) → 𝜑 ) |
9 |
|
fveq2 |
⊢ ( 𝑗 = 𝑀 → ( 𝐼 ‘ 𝑗 ) = ( 𝐼 ‘ 𝑀 ) ) |
10 |
|
fveq2 |
⊢ ( 𝑗 = 𝑀 → ( ℤ≥ ‘ 𝑗 ) = ( ℤ≥ ‘ 𝑀 ) ) |
11 |
9 10
|
eleq12d |
⊢ ( 𝑗 = 𝑀 → ( ( 𝐼 ‘ 𝑗 ) ∈ ( ℤ≥ ‘ 𝑗 ) ↔ ( 𝐼 ‘ 𝑀 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
12 |
11
|
imbi2d |
⊢ ( 𝑗 = 𝑀 → ( ( 𝜑 → ( 𝐼 ‘ 𝑗 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) ↔ ( 𝜑 → ( 𝐼 ‘ 𝑀 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) ) |
13 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝐼 ‘ 𝑗 ) = ( 𝐼 ‘ 𝑘 ) ) |
14 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( ℤ≥ ‘ 𝑗 ) = ( ℤ≥ ‘ 𝑘 ) ) |
15 |
13 14
|
eleq12d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝐼 ‘ 𝑗 ) ∈ ( ℤ≥ ‘ 𝑗 ) ↔ ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) ) |
16 |
15
|
imbi2d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝜑 → ( 𝐼 ‘ 𝑗 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) ↔ ( 𝜑 → ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) ) ) |
17 |
|
fveq2 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝐼 ‘ 𝑗 ) = ( 𝐼 ‘ ( 𝑘 + 1 ) ) ) |
18 |
|
fveq2 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ℤ≥ ‘ 𝑗 ) = ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) |
19 |
17 18
|
eleq12d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝐼 ‘ 𝑗 ) ∈ ( ℤ≥ ‘ 𝑗 ) ↔ ( 𝐼 ‘ ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) ) |
20 |
19
|
imbi2d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝜑 → ( 𝐼 ‘ 𝑗 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) ↔ ( 𝜑 → ( 𝐼 ‘ ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) ) ) |
21 |
|
fveq2 |
⊢ ( 𝑗 = 𝐾 → ( 𝐼 ‘ 𝑗 ) = ( 𝐼 ‘ 𝐾 ) ) |
22 |
|
fveq2 |
⊢ ( 𝑗 = 𝐾 → ( ℤ≥ ‘ 𝑗 ) = ( ℤ≥ ‘ 𝐾 ) ) |
23 |
21 22
|
eleq12d |
⊢ ( 𝑗 = 𝐾 → ( ( 𝐼 ‘ 𝑗 ) ∈ ( ℤ≥ ‘ 𝑗 ) ↔ ( 𝐼 ‘ 𝐾 ) ∈ ( ℤ≥ ‘ 𝐾 ) ) ) |
24 |
23
|
imbi2d |
⊢ ( 𝑗 = 𝐾 → ( ( 𝜑 → ( 𝐼 ‘ 𝑗 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) ↔ ( 𝜑 → ( 𝐼 ‘ 𝐾 ) ∈ ( ℤ≥ ‘ 𝐾 ) ) ) ) |
25 |
3 1
|
eleqtrdi |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑀 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
26 |
25
|
a1i |
⊢ ( 𝑀 ∈ ℤ → ( 𝜑 → ( 𝐼 ‘ 𝑀 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
27 |
|
simpr |
⊢ ( ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 → ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) ) ∧ 𝜑 ) → 𝜑 ) |
28 |
|
simpll |
⊢ ( ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 → ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) ) ∧ 𝜑 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
29 |
|
simplr |
⊢ ( ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 → ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) ) ∧ 𝜑 ) → ( 𝜑 → ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) ) |
30 |
27 29
|
mpd |
⊢ ( ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 → ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) ) ∧ 𝜑 ) → ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) |
31 |
|
eluzelz |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ ℤ ) |
32 |
31
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑘 ∈ ℤ ) |
33 |
32
|
peano2zd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝑘 + 1 ) ∈ ℤ ) |
34 |
33
|
zred |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝑘 + 1 ) ∈ ℝ ) |
35 |
|
eluzelre |
⊢ ( ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) → ( 𝐼 ‘ 𝑘 ) ∈ ℝ ) |
36 |
35
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝐼 ‘ 𝑘 ) ∈ ℝ ) |
37 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) → 1 ∈ ℝ ) |
38 |
36 37
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝐼 ‘ 𝑘 ) + 1 ) ∈ ℝ ) |
39 |
1
|
eqimss2i |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ 𝑍 |
40 |
39
|
a1i |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑀 ) ⊆ 𝑍 ) |
41 |
40
|
sseld |
⊢ ( 𝜑 → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ 𝑍 ) ) |
42 |
41
|
imdistani |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ) |
43 |
42 4
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐼 ‘ ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝑘 ) + 1 ) ) ) |
44 |
43
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝐼 ‘ ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝑘 ) + 1 ) ) ) |
45 |
|
eluzelz |
⊢ ( ( 𝐼 ‘ ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝑘 ) + 1 ) ) → ( 𝐼 ‘ ( 𝑘 + 1 ) ) ∈ ℤ ) |
46 |
44 45
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝐼 ‘ ( 𝑘 + 1 ) ) ∈ ℤ ) |
47 |
46
|
zred |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝐼 ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
48 |
32
|
zred |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑘 ∈ ℝ ) |
49 |
|
eluzle |
⊢ ( ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) → 𝑘 ≤ ( 𝐼 ‘ 𝑘 ) ) |
50 |
49
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑘 ≤ ( 𝐼 ‘ 𝑘 ) ) |
51 |
48 36 37 50
|
leadd1dd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝑘 + 1 ) ≤ ( ( 𝐼 ‘ 𝑘 ) + 1 ) ) |
52 |
|
eluzle |
⊢ ( ( 𝐼 ‘ ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝑘 ) + 1 ) ) → ( ( 𝐼 ‘ 𝑘 ) + 1 ) ≤ ( 𝐼 ‘ ( 𝑘 + 1 ) ) ) |
53 |
44 52
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝐼 ‘ 𝑘 ) + 1 ) ≤ ( 𝐼 ‘ ( 𝑘 + 1 ) ) ) |
54 |
34 38 47 51 53
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝑘 + 1 ) ≤ ( 𝐼 ‘ ( 𝑘 + 1 ) ) ) |
55 |
|
eluz |
⊢ ( ( ( 𝑘 + 1 ) ∈ ℤ ∧ ( 𝐼 ‘ ( 𝑘 + 1 ) ) ∈ ℤ ) → ( ( 𝐼 ‘ ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ↔ ( 𝑘 + 1 ) ≤ ( 𝐼 ‘ ( 𝑘 + 1 ) ) ) ) |
56 |
33 46 55
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝐼 ‘ ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ↔ ( 𝑘 + 1 ) ≤ ( 𝐼 ‘ ( 𝑘 + 1 ) ) ) ) |
57 |
54 56
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝐼 ‘ ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) |
58 |
27 28 30 57
|
syl3anc |
⊢ ( ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 → ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) ) ∧ 𝜑 ) → ( 𝐼 ‘ ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) |
59 |
58
|
exp31 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝜑 → ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝜑 → ( 𝐼 ‘ ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) ) ) |
60 |
12 16 20 24 26 59
|
uzind4 |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ( 𝐼 ‘ 𝐾 ) ∈ ( ℤ≥ ‘ 𝐾 ) ) ) |
61 |
7 8 60
|
sylc |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ 𝑍 ) → ( 𝐼 ‘ 𝐾 ) ∈ ( ℤ≥ ‘ 𝐾 ) ) |