| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clim2ser.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
climub.2 |
⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) |
| 3 |
|
climub.3 |
⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) |
| 4 |
|
climub.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 5 |
|
climub.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 6 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑁 ) = ( ℤ≥ ‘ 𝑁 ) |
| 7 |
2 1
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 8 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) |
| 9 |
7 8
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 10 |
|
fveq2 |
⊢ ( 𝑘 = 𝑁 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑁 ) ) |
| 11 |
10
|
eleq1d |
⊢ ( 𝑘 = 𝑁 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝑁 ) ∈ ℝ ) ) |
| 12 |
11
|
imbi2d |
⊢ ( 𝑘 = 𝑁 → ( ( 𝜑 → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) ↔ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ ℝ ) ) ) |
| 13 |
4
|
expcom |
⊢ ( 𝑘 ∈ 𝑍 → ( 𝜑 → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) ) |
| 14 |
12 13
|
vtoclga |
⊢ ( 𝑁 ∈ 𝑍 → ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ ℝ ) ) |
| 15 |
2 14
|
mpcom |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ ℝ ) |
| 16 |
1
|
uztrn2 |
⊢ ( ( 𝑁 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑗 ∈ 𝑍 ) |
| 17 |
2 16
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑗 ∈ 𝑍 ) |
| 18 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑗 ) ) |
| 19 |
18
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) ) |
| 20 |
19
|
imbi2d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) ↔ ( 𝜑 → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) ) ) |
| 21 |
20 13
|
vtoclga |
⊢ ( 𝑗 ∈ 𝑍 → ( 𝜑 → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) ) |
| 22 |
21
|
impcom |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) |
| 23 |
17 22
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) |
| 24 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 25 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑁 ... 𝑗 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 26 |
1
|
uztrn2 |
⊢ ( ( 𝑁 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑘 ∈ 𝑍 ) |
| 27 |
2 26
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑘 ∈ 𝑍 ) |
| 28 |
27 4
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 29 |
25 28
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 30 |
29
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 31 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑁 ... ( 𝑗 − 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 32 |
27 5
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 33 |
31 32
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑁 ... ( 𝑗 − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 34 |
33
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑁 ... ( 𝑗 − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 35 |
24 30 34
|
monoord |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐹 ‘ 𝑁 ) ≤ ( 𝐹 ‘ 𝑗 ) ) |
| 36 |
6 9 15 3 23 35
|
climlec2 |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ≤ 𝐴 ) |