| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							climxrre.m | 
							⊢ ( 𝜑  →  𝑀  ∈  ℤ )  | 
						
						
							| 2 | 
							
								
							 | 
							climxrre.z | 
							⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 )  | 
						
						
							| 3 | 
							
								
							 | 
							climxrre.f | 
							⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ℝ* )  | 
						
						
							| 4 | 
							
								
							 | 
							climxrre.a | 
							⊢ ( 𝜑  →  𝐴  ∈  ℝ )  | 
						
						
							| 5 | 
							
								
							 | 
							climxrre.c | 
							⊢ ( 𝜑  →  𝐹  ⇝  𝐴 )  | 
						
						
							| 6 | 
							
								1
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  +∞  ∈  ℂ )  ∧  -∞  ∈  ℂ )  →  𝑀  ∈  ℤ )  | 
						
						
							| 7 | 
							
								3
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  +∞  ∈  ℂ )  ∧  -∞  ∈  ℂ )  →  𝐹 : 𝑍 ⟶ ℝ* )  | 
						
						
							| 8 | 
							
								5
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  +∞  ∈  ℂ )  ∧  -∞  ∈  ℂ )  →  𝐹  ⇝  𝐴 )  | 
						
						
							| 9 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  +∞  ∈  ℂ )  →  +∞  ∈  ℂ )  | 
						
						
							| 10 | 
							
								4
							 | 
							recnd | 
							⊢ ( 𝜑  →  𝐴  ∈  ℂ )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  +∞  ∈  ℂ )  →  𝐴  ∈  ℂ )  | 
						
						
							| 12 | 
							
								9 11
							 | 
							subcld | 
							⊢ ( ( 𝜑  ∧  +∞  ∈  ℂ )  →  ( +∞  −  𝐴 )  ∈  ℂ )  | 
						
						
							| 13 | 
							
								
							 | 
							renepnf | 
							⊢ ( 𝐴  ∈  ℝ  →  𝐴  ≠  +∞ )  | 
						
						
							| 14 | 
							
								13
							 | 
							necomd | 
							⊢ ( 𝐴  ∈  ℝ  →  +∞  ≠  𝐴 )  | 
						
						
							| 15 | 
							
								4 14
							 | 
							syl | 
							⊢ ( 𝜑  →  +∞  ≠  𝐴 )  | 
						
						
							| 16 | 
							
								15
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  +∞  ∈  ℂ )  →  +∞  ≠  𝐴 )  | 
						
						
							| 17 | 
							
								9 11 16
							 | 
							subne0d | 
							⊢ ( ( 𝜑  ∧  +∞  ∈  ℂ )  →  ( +∞  −  𝐴 )  ≠  0 )  | 
						
						
							| 18 | 
							
								12 17
							 | 
							absrpcld | 
							⊢ ( ( 𝜑  ∧  +∞  ∈  ℂ )  →  ( abs ‘ ( +∞  −  𝐴 ) )  ∈  ℝ+ )  | 
						
						
							| 19 | 
							
								18
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  +∞  ∈  ℂ )  ∧  -∞  ∈  ℂ )  →  ( abs ‘ ( +∞  −  𝐴 ) )  ∈  ℝ+ )  | 
						
						
							| 20 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  -∞  ∈  ℂ )  →  -∞  ∈  ℂ )  | 
						
						
							| 21 | 
							
								10
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  -∞  ∈  ℂ )  →  𝐴  ∈  ℂ )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							subcld | 
							⊢ ( ( 𝜑  ∧  -∞  ∈  ℂ )  →  ( -∞  −  𝐴 )  ∈  ℂ )  | 
						
						
							| 23 | 
							
								4
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  -∞  ∈  ℂ )  →  𝐴  ∈  ℝ )  | 
						
						
							| 24 | 
							
								
							 | 
							renemnf | 
							⊢ ( 𝐴  ∈  ℝ  →  𝐴  ≠  -∞ )  | 
						
						
							| 25 | 
							
								24
							 | 
							necomd | 
							⊢ ( 𝐴  ∈  ℝ  →  -∞  ≠  𝐴 )  | 
						
						
							| 26 | 
							
								23 25
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  -∞  ∈  ℂ )  →  -∞  ≠  𝐴 )  | 
						
						
							| 27 | 
							
								20 21 26
							 | 
							subne0d | 
							⊢ ( ( 𝜑  ∧  -∞  ∈  ℂ )  →  ( -∞  −  𝐴 )  ≠  0 )  | 
						
						
							| 28 | 
							
								22 27
							 | 
							absrpcld | 
							⊢ ( ( 𝜑  ∧  -∞  ∈  ℂ )  →  ( abs ‘ ( -∞  −  𝐴 ) )  ∈  ℝ+ )  | 
						
						
							| 29 | 
							
								28
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  +∞  ∈  ℂ )  ∧  -∞  ∈  ℂ )  →  ( abs ‘ ( -∞  −  𝐴 ) )  ∈  ℝ+ )  | 
						
						
							| 30 | 
							
								19 29
							 | 
							ifcld | 
							⊢ ( ( ( 𝜑  ∧  +∞  ∈  ℂ )  ∧  -∞  ∈  ℂ )  →  if ( ( abs ‘ ( +∞  −  𝐴 ) )  ≤  ( abs ‘ ( -∞  −  𝐴 ) ) ,  ( abs ‘ ( +∞  −  𝐴 ) ) ,  ( abs ‘ ( -∞  −  𝐴 ) ) )  ∈  ℝ+ )  | 
						
						
							| 31 | 
							
								19
							 | 
							rpred | 
							⊢ ( ( ( 𝜑  ∧  +∞  ∈  ℂ )  ∧  -∞  ∈  ℂ )  →  ( abs ‘ ( +∞  −  𝐴 ) )  ∈  ℝ )  | 
						
						
							| 32 | 
							
								29
							 | 
							rpred | 
							⊢ ( ( ( 𝜑  ∧  +∞  ∈  ℂ )  ∧  -∞  ∈  ℂ )  →  ( abs ‘ ( -∞  −  𝐴 ) )  ∈  ℝ )  | 
						
						
							| 33 | 
							
								31 32
							 | 
							min1d | 
							⊢ ( ( ( 𝜑  ∧  +∞  ∈  ℂ )  ∧  -∞  ∈  ℂ )  →  if ( ( abs ‘ ( +∞  −  𝐴 ) )  ≤  ( abs ‘ ( -∞  −  𝐴 ) ) ,  ( abs ‘ ( +∞  −  𝐴 ) ) ,  ( abs ‘ ( -∞  −  𝐴 ) ) )  ≤  ( abs ‘ ( +∞  −  𝐴 ) ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							adantr | 
							⊢ ( ( ( ( 𝜑  ∧  +∞  ∈  ℂ )  ∧  -∞  ∈  ℂ )  ∧  +∞  ∈  ℂ )  →  if ( ( abs ‘ ( +∞  −  𝐴 ) )  ≤  ( abs ‘ ( -∞  −  𝐴 ) ) ,  ( abs ‘ ( +∞  −  𝐴 ) ) ,  ( abs ‘ ( -∞  −  𝐴 ) ) )  ≤  ( abs ‘ ( +∞  −  𝐴 ) ) )  | 
						
						
							| 35 | 
							
								31 32
							 | 
							min2d | 
							⊢ ( ( ( 𝜑  ∧  +∞  ∈  ℂ )  ∧  -∞  ∈  ℂ )  →  if ( ( abs ‘ ( +∞  −  𝐴 ) )  ≤  ( abs ‘ ( -∞  −  𝐴 ) ) ,  ( abs ‘ ( +∞  −  𝐴 ) ) ,  ( abs ‘ ( -∞  −  𝐴 ) ) )  ≤  ( abs ‘ ( -∞  −  𝐴 ) ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							adantr | 
							⊢ ( ( ( ( 𝜑  ∧  +∞  ∈  ℂ )  ∧  -∞  ∈  ℂ )  ∧  -∞  ∈  ℂ )  →  if ( ( abs ‘ ( +∞  −  𝐴 ) )  ≤  ( abs ‘ ( -∞  −  𝐴 ) ) ,  ( abs ‘ ( +∞  −  𝐴 ) ) ,  ( abs ‘ ( -∞  −  𝐴 ) ) )  ≤  ( abs ‘ ( -∞  −  𝐴 ) ) )  | 
						
						
							| 37 | 
							
								6 2 7 8 30 34 36
							 | 
							climxrrelem | 
							⊢ ( ( ( 𝜑  ∧  +∞  ∈  ℂ )  ∧  -∞  ∈  ℂ )  →  ∃ 𝑗  ∈  𝑍 ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ )  | 
						
						
							| 38 | 
							
								1
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  +∞  ∈  ℂ )  ∧  ¬  -∞  ∈  ℂ )  →  𝑀  ∈  ℤ )  | 
						
						
							| 39 | 
							
								3
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  +∞  ∈  ℂ )  ∧  ¬  -∞  ∈  ℂ )  →  𝐹 : 𝑍 ⟶ ℝ* )  | 
						
						
							| 40 | 
							
								5
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  +∞  ∈  ℂ )  ∧  ¬  -∞  ∈  ℂ )  →  𝐹  ⇝  𝐴 )  | 
						
						
							| 41 | 
							
								18
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  +∞  ∈  ℂ )  ∧  ¬  -∞  ∈  ℂ )  →  ( abs ‘ ( +∞  −  𝐴 ) )  ∈  ℝ+ )  | 
						
						
							| 42 | 
							
								18
							 | 
							rpred | 
							⊢ ( ( 𝜑  ∧  +∞  ∈  ℂ )  →  ( abs ‘ ( +∞  −  𝐴 ) )  ∈  ℝ )  | 
						
						
							| 43 | 
							
								42
							 | 
							leidd | 
							⊢ ( ( 𝜑  ∧  +∞  ∈  ℂ )  →  ( abs ‘ ( +∞  −  𝐴 ) )  ≤  ( abs ‘ ( +∞  −  𝐴 ) ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝜑  ∧  +∞  ∈  ℂ )  ∧  ¬  -∞  ∈  ℂ )  ∧  +∞  ∈  ℂ )  →  ( abs ‘ ( +∞  −  𝐴 ) )  ≤  ( abs ‘ ( +∞  −  𝐴 ) ) )  | 
						
						
							| 45 | 
							
								
							 | 
							pm2.21 | 
							⊢ ( ¬  -∞  ∈  ℂ  →  ( -∞  ∈  ℂ  →  ( abs ‘ ( +∞  −  𝐴 ) )  ≤  ( abs ‘ ( -∞  −  𝐴 ) ) ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							imp | 
							⊢ ( ( ¬  -∞  ∈  ℂ  ∧  -∞  ∈  ℂ )  →  ( abs ‘ ( +∞  −  𝐴 ) )  ≤  ( abs ‘ ( -∞  −  𝐴 ) ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							adantll | 
							⊢ ( ( ( ( 𝜑  ∧  +∞  ∈  ℂ )  ∧  ¬  -∞  ∈  ℂ )  ∧  -∞  ∈  ℂ )  →  ( abs ‘ ( +∞  −  𝐴 ) )  ≤  ( abs ‘ ( -∞  −  𝐴 ) ) )  | 
						
						
							| 48 | 
							
								38 2 39 40 41 44 47
							 | 
							climxrrelem | 
							⊢ ( ( ( 𝜑  ∧  +∞  ∈  ℂ )  ∧  ¬  -∞  ∈  ℂ )  →  ∃ 𝑗  ∈  𝑍 ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ )  | 
						
						
							| 49 | 
							
								37 48
							 | 
							pm2.61dan | 
							⊢ ( ( 𝜑  ∧  +∞  ∈  ℂ )  →  ∃ 𝑗  ∈  𝑍 ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ )  | 
						
						
							| 50 | 
							
								1
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  ¬  +∞  ∈  ℂ )  ∧  -∞  ∈  ℂ )  →  𝑀  ∈  ℤ )  | 
						
						
							| 51 | 
							
								3
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  ¬  +∞  ∈  ℂ )  ∧  -∞  ∈  ℂ )  →  𝐹 : 𝑍 ⟶ ℝ* )  | 
						
						
							| 52 | 
							
								5
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  ¬  +∞  ∈  ℂ )  ∧  -∞  ∈  ℂ )  →  𝐹  ⇝  𝐴 )  | 
						
						
							| 53 | 
							
								28
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  ¬  +∞  ∈  ℂ )  ∧  -∞  ∈  ℂ )  →  ( abs ‘ ( -∞  −  𝐴 ) )  ∈  ℝ+ )  | 
						
						
							| 54 | 
							
								
							 | 
							pm2.21 | 
							⊢ ( ¬  +∞  ∈  ℂ  →  ( +∞  ∈  ℂ  →  ( abs ‘ ( -∞  −  𝐴 ) )  ≤  ( abs ‘ ( +∞  −  𝐴 ) ) ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							imp | 
							⊢ ( ( ¬  +∞  ∈  ℂ  ∧  +∞  ∈  ℂ )  →  ( abs ‘ ( -∞  −  𝐴 ) )  ≤  ( abs ‘ ( +∞  −  𝐴 ) ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							ad4ant24 | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  +∞  ∈  ℂ )  ∧  -∞  ∈  ℂ )  ∧  +∞  ∈  ℂ )  →  ( abs ‘ ( -∞  −  𝐴 ) )  ≤  ( abs ‘ ( +∞  −  𝐴 ) ) )  | 
						
						
							| 57 | 
							
								28
							 | 
							rpred | 
							⊢ ( ( 𝜑  ∧  -∞  ∈  ℂ )  →  ( abs ‘ ( -∞  −  𝐴 ) )  ∈  ℝ )  | 
						
						
							| 58 | 
							
								57
							 | 
							leidd | 
							⊢ ( ( 𝜑  ∧  -∞  ∈  ℂ )  →  ( abs ‘ ( -∞  −  𝐴 ) )  ≤  ( abs ‘ ( -∞  −  𝐴 ) ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							ad4ant13 | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  +∞  ∈  ℂ )  ∧  -∞  ∈  ℂ )  ∧  -∞  ∈  ℂ )  →  ( abs ‘ ( -∞  −  𝐴 ) )  ≤  ( abs ‘ ( -∞  −  𝐴 ) ) )  | 
						
						
							| 60 | 
							
								50 2 51 52 53 56 59
							 | 
							climxrrelem | 
							⊢ ( ( ( 𝜑  ∧  ¬  +∞  ∈  ℂ )  ∧  -∞  ∈  ℂ )  →  ∃ 𝑗  ∈  𝑍 ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ )  | 
						
						
							| 61 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  ¬  +∞  ∈  ℂ )  ∧  ¬  -∞  ∈  ℂ )  | 
						
						
							| 62 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑘 𝑗  ∈  𝑍  | 
						
						
							| 63 | 
							
								
							 | 
							nfra1 | 
							⊢ Ⅎ 𝑘 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ  | 
						
						
							| 64 | 
							
								62 63
							 | 
							nfan | 
							⊢ Ⅎ 𝑘 ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ )  | 
						
						
							| 65 | 
							
								61 64
							 | 
							nfan | 
							⊢ Ⅎ 𝑘 ( ( ( 𝜑  ∧  ¬  +∞  ∈  ℂ )  ∧  ¬  -∞  ∈  ℂ )  ∧  ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) )  | 
						
						
							| 66 | 
							
								
							 | 
							simp-4l | 
							⊢ ( ( ( ( ( 𝜑  ∧  ¬  +∞  ∈  ℂ )  ∧  ¬  -∞  ∈  ℂ )  ∧  ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝜑 )  | 
						
						
							| 67 | 
							
								2
							 | 
							uztrn2 | 
							⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑘  ∈  𝑍 )  | 
						
						
							| 68 | 
							
								67
							 | 
							adantlr | 
							⊢ ( ( ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑘  ∈  𝑍 )  | 
						
						
							| 69 | 
							
								68
							 | 
							adantll | 
							⊢ ( ( ( ( ( 𝜑  ∧  ¬  +∞  ∈  ℂ )  ∧  ¬  -∞  ∈  ℂ )  ∧  ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑘  ∈  𝑍 )  | 
						
						
							| 70 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  𝑘  ∈  𝑍 )  | 
						
						
							| 71 | 
							
								3
							 | 
							fdmd | 
							⊢ ( 𝜑  →  dom  𝐹  =  𝑍 )  | 
						
						
							| 72 | 
							
								71
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  dom  𝐹  =  𝑍 )  | 
						
						
							| 73 | 
							
								70 72
							 | 
							eleqtrrd | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  𝑘  ∈  dom  𝐹 )  | 
						
						
							| 74 | 
							
								66 69 73
							 | 
							syl2anc | 
							⊢ ( ( ( ( ( 𝜑  ∧  ¬  +∞  ∈  ℂ )  ∧  ¬  -∞  ∈  ℂ )  ∧  ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑘  ∈  dom  𝐹 )  | 
						
						
							| 75 | 
							
								3
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ* )  | 
						
						
							| 76 | 
							
								66 69 75
							 | 
							syl2anc | 
							⊢ ( ( ( ( ( 𝜑  ∧  ¬  +∞  ∈  ℂ )  ∧  ¬  -∞  ∈  ℂ )  ∧  ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ* )  | 
						
						
							| 77 | 
							
								
							 | 
							rspa | 
							⊢ ( ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ )  | 
						
						
							| 78 | 
							
								77
							 | 
							adantll | 
							⊢ ( ( ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ )  | 
						
						
							| 79 | 
							
								78
							 | 
							adantll | 
							⊢ ( ( ( ( ( 𝜑  ∧  ¬  +∞  ∈  ℂ )  ∧  ¬  -∞  ∈  ℂ )  ∧  ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ )  | 
						
						
							| 80 | 
							
								
							 | 
							simpllr | 
							⊢ ( ( ( ( ( 𝜑  ∧  ¬  +∞  ∈  ℂ )  ∧  ¬  -∞  ∈  ℂ )  ∧  ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ¬  -∞  ∈  ℂ )  | 
						
						
							| 81 | 
							
								
							 | 
							nelne2 | 
							⊢ ( ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ¬  -∞  ∈  ℂ )  →  ( 𝐹 ‘ 𝑘 )  ≠  -∞ )  | 
						
						
							| 82 | 
							
								79 80 81
							 | 
							syl2anc | 
							⊢ ( ( ( ( ( 𝜑  ∧  ¬  +∞  ∈  ℂ )  ∧  ¬  -∞  ∈  ℂ )  ∧  ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝐹 ‘ 𝑘 )  ≠  -∞ )  | 
						
						
							| 83 | 
							
								
							 | 
							simp-4r | 
							⊢ ( ( ( ( ( 𝜑  ∧  ¬  +∞  ∈  ℂ )  ∧  ¬  -∞  ∈  ℂ )  ∧  ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ¬  +∞  ∈  ℂ )  | 
						
						
							| 84 | 
							
								
							 | 
							nelne2 | 
							⊢ ( ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ¬  +∞  ∈  ℂ )  →  ( 𝐹 ‘ 𝑘 )  ≠  +∞ )  | 
						
						
							| 85 | 
							
								79 83 84
							 | 
							syl2anc | 
							⊢ ( ( ( ( ( 𝜑  ∧  ¬  +∞  ∈  ℂ )  ∧  ¬  -∞  ∈  ℂ )  ∧  ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝐹 ‘ 𝑘 )  ≠  +∞ )  | 
						
						
							| 86 | 
							
								76 82 85
							 | 
							xrred | 
							⊢ ( ( ( ( ( 𝜑  ∧  ¬  +∞  ∈  ℂ )  ∧  ¬  -∞  ∈  ℂ )  ∧  ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ )  | 
						
						
							| 87 | 
							
								74 86
							 | 
							jca | 
							⊢ ( ( ( ( ( 𝜑  ∧  ¬  +∞  ∈  ℂ )  ∧  ¬  -∞  ∈  ℂ )  ∧  ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) )  | 
						
						
							| 88 | 
							
								65 87
							 | 
							ralrimia | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  +∞  ∈  ℂ )  ∧  ¬  -∞  ∈  ℂ )  ∧  ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) )  | 
						
						
							| 89 | 
							
								3
							 | 
							ffund | 
							⊢ ( 𝜑  →  Fun  𝐹 )  | 
						
						
							| 90 | 
							
								
							 | 
							ffvresb | 
							⊢ ( Fun  𝐹  →  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) ) )  | 
						
						
							| 91 | 
							
								89 90
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) ) )  | 
						
						
							| 92 | 
							
								91
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  +∞  ∈  ℂ )  ∧  ¬  -∞  ∈  ℂ )  ∧  ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) )  →  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) ) )  | 
						
						
							| 93 | 
							
								88 92
							 | 
							mpbird | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  +∞  ∈  ℂ )  ∧  ¬  -∞  ∈  ℂ )  ∧  ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) )  →  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ )  | 
						
						
							| 94 | 
							
								
							 | 
							r19.26 | 
							⊢ ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  1 )  ↔  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  1 ) )  | 
						
						
							| 95 | 
							
								94
							 | 
							simplbi | 
							⊢ ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  1 )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ )  | 
						
						
							| 96 | 
							
								95
							 | 
							ad2antll | 
							⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℤ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  1 ) ) )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ )  | 
						
						
							| 97 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑥  =  1  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥  ↔  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  1 ) )  | 
						
						
							| 98 | 
							
								97
							 | 
							anbi2d | 
							⊢ ( 𝑥  =  1  →  ( ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 )  ↔  ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  1 ) ) )  | 
						
						
							| 99 | 
							
								98
							 | 
							rexralbidv | 
							⊢ ( 𝑥  =  1  →  ( ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 )  ↔  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  1 ) ) )  | 
						
						
							| 100 | 
							
								2
							 | 
							fvexi | 
							⊢ 𝑍  ∈  V  | 
						
						
							| 101 | 
							
								100
							 | 
							a1i | 
							⊢ ( 𝜑  →  𝑍  ∈  V )  | 
						
						
							| 102 | 
							
								3 101
							 | 
							fexd | 
							⊢ ( 𝜑  →  𝐹  ∈  V )  | 
						
						
							| 103 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ℤ )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 ) )  | 
						
						
							| 104 | 
							
								102 103
							 | 
							clim | 
							⊢ ( 𝜑  →  ( 𝐹  ⇝  𝐴  ↔  ( 𝐴  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) ) ) )  | 
						
						
							| 105 | 
							
								5 104
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( 𝐴  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) ) )  | 
						
						
							| 106 | 
							
								105
							 | 
							simprd | 
							⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) )  | 
						
						
							| 107 | 
							
								
							 | 
							1rp | 
							⊢ 1  ∈  ℝ+  | 
						
						
							| 108 | 
							
								107
							 | 
							a1i | 
							⊢ ( 𝜑  →  1  ∈  ℝ+ )  | 
						
						
							| 109 | 
							
								99 106 108
							 | 
							rspcdva | 
							⊢ ( 𝜑  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  1 ) )  | 
						
						
							| 110 | 
							
								96 109
							 | 
							reximddv | 
							⊢ ( 𝜑  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ )  | 
						
						
							| 111 | 
							
								2
							 | 
							rexuz3 | 
							⊢ ( 𝑀  ∈  ℤ  →  ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ↔  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) )  | 
						
						
							| 112 | 
							
								1 111
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ↔  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) )  | 
						
						
							| 113 | 
							
								110 112
							 | 
							mpbird | 
							⊢ ( 𝜑  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ )  | 
						
						
							| 114 | 
							
								113
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  ¬  +∞  ∈  ℂ )  ∧  ¬  -∞  ∈  ℂ )  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ )  | 
						
						
							| 115 | 
							
								93 114
							 | 
							reximddv | 
							⊢ ( ( ( 𝜑  ∧  ¬  +∞  ∈  ℂ )  ∧  ¬  -∞  ∈  ℂ )  →  ∃ 𝑗  ∈  𝑍 ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ )  | 
						
						
							| 116 | 
							
								60 115
							 | 
							pm2.61dan | 
							⊢ ( ( 𝜑  ∧  ¬  +∞  ∈  ℂ )  →  ∃ 𝑗  ∈  𝑍 ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ )  | 
						
						
							| 117 | 
							
								49 116
							 | 
							pm2.61dan | 
							⊢ ( 𝜑  →  ∃ 𝑗  ∈  𝑍 ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ )  |