Description: The zero sequence converges to zero. (Contributed by NM, 2-Oct-1999) (Revised by Mario Carneiro, 31-Jan-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | climz | ⊢ ( ℤ × { 0 } ) ⇝ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn | ⊢ 0 ∈ ℂ | |
2 | 0z | ⊢ 0 ∈ ℤ | |
3 | uzssz | ⊢ ( ℤ≥ ‘ 0 ) ⊆ ℤ | |
4 | zex | ⊢ ℤ ∈ V | |
5 | 3 4 | climconst2 | ⊢ ( ( 0 ∈ ℂ ∧ 0 ∈ ℤ ) → ( ℤ × { 0 } ) ⇝ 0 ) |
6 | 1 2 5 | mp2an | ⊢ ( ℤ × { 0 } ) ⇝ 0 |