Metamath Proof Explorer


Theorem climz

Description: The zero sequence converges to zero. (Contributed by NM, 2-Oct-1999) (Revised by Mario Carneiro, 31-Jan-2014)

Ref Expression
Assertion climz ( ℤ × { 0 } ) ⇝ 0

Proof

Step Hyp Ref Expression
1 0cn 0 ∈ ℂ
2 0z 0 ∈ ℤ
3 uzssz ( ℤ ‘ 0 ) ⊆ ℤ
4 zex ℤ ∈ V
5 3 4 climconst2 ( ( 0 ∈ ℂ ∧ 0 ∈ ℤ ) → ( ℤ × { 0 } ) ⇝ 0 )
6 1 2 5 mp2an ( ℤ × { 0 } ) ⇝ 0