| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clm0.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 2 |  | eqid | ⊢ ( Base ‘ 𝐹 )  =  ( Base ‘ 𝐹 ) | 
						
							| 3 | 1 2 | clmsubrg | ⊢ ( 𝑊  ∈  ℂMod  →  ( Base ‘ 𝐹 )  ∈  ( SubRing ‘ ℂfld ) ) | 
						
							| 4 |  | eqid | ⊢ ( ℂfld  ↾s  ( Base ‘ 𝐹 ) )  =  ( ℂfld  ↾s  ( Base ‘ 𝐹 ) ) | 
						
							| 5 |  | cnfld0 | ⊢ 0  =  ( 0g ‘ ℂfld ) | 
						
							| 6 | 4 5 | subrg0 | ⊢ ( ( Base ‘ 𝐹 )  ∈  ( SubRing ‘ ℂfld )  →  0  =  ( 0g ‘ ( ℂfld  ↾s  ( Base ‘ 𝐹 ) ) ) ) | 
						
							| 7 | 3 6 | syl | ⊢ ( 𝑊  ∈  ℂMod  →  0  =  ( 0g ‘ ( ℂfld  ↾s  ( Base ‘ 𝐹 ) ) ) ) | 
						
							| 8 | 1 2 | clmsca | ⊢ ( 𝑊  ∈  ℂMod  →  𝐹  =  ( ℂfld  ↾s  ( Base ‘ 𝐹 ) ) ) | 
						
							| 9 | 8 | fveq2d | ⊢ ( 𝑊  ∈  ℂMod  →  ( 0g ‘ 𝐹 )  =  ( 0g ‘ ( ℂfld  ↾s  ( Base ‘ 𝐹 ) ) ) ) | 
						
							| 10 | 7 9 | eqtr4d | ⊢ ( 𝑊  ∈  ℂMod  →  0  =  ( 0g ‘ 𝐹 ) ) |