Step |
Hyp |
Ref |
Expression |
1 |
|
clm0vs.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
clm0vs.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
3 |
|
clm0vs.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
4 |
|
clm0vs.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
5 |
2
|
clm0 |
⊢ ( 𝑊 ∈ ℂMod → 0 = ( 0g ‘ 𝐹 ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉 ) → 0 = ( 0g ‘ 𝐹 ) ) |
7 |
6
|
oveq1d |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉 ) → ( 0 · 𝑋 ) = ( ( 0g ‘ 𝐹 ) · 𝑋 ) ) |
8 |
|
clmlmod |
⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod ) |
9 |
|
eqid |
⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) |
10 |
1 2 3 9 4
|
lmod0vs |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 0g ‘ 𝐹 ) · 𝑋 ) = 0 ) |
11 |
8 10
|
sylan |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 0g ‘ 𝐹 ) · 𝑋 ) = 0 ) |
12 |
7 11
|
eqtrd |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉 ) → ( 0 · 𝑋 ) = 0 ) |