| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clm0vs.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | clm0vs.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 3 |  | clm0vs.s | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 4 |  | clm0vs.z | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 5 | 2 | clm0 | ⊢ ( 𝑊  ∈  ℂMod  →  0  =  ( 0g ‘ 𝐹 ) ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝑊  ∈  ℂMod  ∧  𝑋  ∈  𝑉 )  →  0  =  ( 0g ‘ 𝐹 ) ) | 
						
							| 7 | 6 | oveq1d | ⊢ ( ( 𝑊  ∈  ℂMod  ∧  𝑋  ∈  𝑉 )  →  ( 0  ·  𝑋 )  =  ( ( 0g ‘ 𝐹 )  ·  𝑋 ) ) | 
						
							| 8 |  | clmlmod | ⊢ ( 𝑊  ∈  ℂMod  →  𝑊  ∈  LMod ) | 
						
							| 9 |  | eqid | ⊢ ( 0g ‘ 𝐹 )  =  ( 0g ‘ 𝐹 ) | 
						
							| 10 | 1 2 3 9 4 | lmod0vs | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  𝑉 )  →  ( ( 0g ‘ 𝐹 )  ·  𝑋 )  =   0  ) | 
						
							| 11 | 8 10 | sylan | ⊢ ( ( 𝑊  ∈  ℂMod  ∧  𝑋  ∈  𝑉 )  →  ( ( 0g ‘ 𝐹 )  ·  𝑋 )  =   0  ) | 
						
							| 12 | 7 11 | eqtrd | ⊢ ( ( 𝑊  ∈  ℂMod  ∧  𝑋  ∈  𝑉 )  →  ( 0  ·  𝑋 )  =   0  ) |