Description: A subcomplex module is an abelian group. (Contributed by Mario Carneiro, 16-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | clmabl | ⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ Abel ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clmlmod | ⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod ) | |
2 | lmodabl | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Abel ) | |
3 | 1 2 | syl | ⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ Abel ) |