Metamath Proof Explorer


Theorem clmabl

Description: A subcomplex module is an abelian group. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Assertion clmabl ( 𝑊 ∈ ℂMod → 𝑊 ∈ Abel )

Proof

Step Hyp Ref Expression
1 clmlmod ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod )
2 lmodabl ( 𝑊 ∈ LMod → 𝑊 ∈ Abel )
3 1 2 syl ( 𝑊 ∈ ℂMod → 𝑊 ∈ Abel )