Step |
Hyp |
Ref |
Expression |
1 |
|
clm0.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
2 |
|
clmsub.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
3 |
1 2
|
clmsca |
⊢ ( 𝑊 ∈ ℂMod → 𝐹 = ( ℂfld ↾s 𝐾 ) ) |
4 |
3
|
fveq2d |
⊢ ( 𝑊 ∈ ℂMod → ( norm ‘ 𝐹 ) = ( norm ‘ ( ℂfld ↾s 𝐾 ) ) ) |
5 |
4
|
adantr |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾 ) → ( norm ‘ 𝐹 ) = ( norm ‘ ( ℂfld ↾s 𝐾 ) ) ) |
6 |
5
|
fveq1d |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾 ) → ( ( norm ‘ 𝐹 ) ‘ 𝐴 ) = ( ( norm ‘ ( ℂfld ↾s 𝐾 ) ) ‘ 𝐴 ) ) |
7 |
1 2
|
clmsubrg |
⊢ ( 𝑊 ∈ ℂMod → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
8 |
|
subrgsubg |
⊢ ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → 𝐾 ∈ ( SubGrp ‘ ℂfld ) ) |
9 |
7 8
|
syl |
⊢ ( 𝑊 ∈ ℂMod → 𝐾 ∈ ( SubGrp ‘ ℂfld ) ) |
10 |
|
eqid |
⊢ ( ℂfld ↾s 𝐾 ) = ( ℂfld ↾s 𝐾 ) |
11 |
|
cnfldnm |
⊢ abs = ( norm ‘ ℂfld ) |
12 |
|
eqid |
⊢ ( norm ‘ ( ℂfld ↾s 𝐾 ) ) = ( norm ‘ ( ℂfld ↾s 𝐾 ) ) |
13 |
10 11 12
|
subgnm2 |
⊢ ( ( 𝐾 ∈ ( SubGrp ‘ ℂfld ) ∧ 𝐴 ∈ 𝐾 ) → ( ( norm ‘ ( ℂfld ↾s 𝐾 ) ) ‘ 𝐴 ) = ( abs ‘ 𝐴 ) ) |
14 |
9 13
|
sylan |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾 ) → ( ( norm ‘ ( ℂfld ↾s 𝐾 ) ) ‘ 𝐴 ) = ( abs ‘ 𝐴 ) ) |
15 |
6 14
|
eqtr2d |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾 ) → ( abs ‘ 𝐴 ) = ( ( norm ‘ 𝐹 ) ‘ 𝐴 ) ) |