Description: Closure of ring addition for a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | clm0.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
clmsub.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
Assertion | clmacl | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → ( 𝑋 + 𝑌 ) ∈ 𝐾 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clm0.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
2 | clmsub.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
3 | 1 2 | clmsubrg | ⊢ ( 𝑊 ∈ ℂMod → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
4 | cnfldadd | ⊢ + = ( +g ‘ ℂfld ) | |
5 | 4 | subrgacl | ⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → ( 𝑋 + 𝑌 ) ∈ 𝐾 ) |
6 | 3 5 | syl3an1 | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → ( 𝑋 + 𝑌 ) ∈ 𝐾 ) |