| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clm0.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 2 |  | fvex | ⊢ ( Base ‘ 𝐹 )  ∈  V | 
						
							| 3 |  | eqid | ⊢ ( ℂfld  ↾s  ( Base ‘ 𝐹 ) )  =  ( ℂfld  ↾s  ( Base ‘ 𝐹 ) ) | 
						
							| 4 |  | cnfldcj | ⊢ ∗  =  ( *𝑟 ‘ ℂfld ) | 
						
							| 5 | 3 4 | ressstarv | ⊢ ( ( Base ‘ 𝐹 )  ∈  V  →  ∗  =  ( *𝑟 ‘ ( ℂfld  ↾s  ( Base ‘ 𝐹 ) ) ) ) | 
						
							| 6 | 2 5 | ax-mp | ⊢ ∗  =  ( *𝑟 ‘ ( ℂfld  ↾s  ( Base ‘ 𝐹 ) ) ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ 𝐹 )  =  ( Base ‘ 𝐹 ) | 
						
							| 8 | 1 7 | clmsca | ⊢ ( 𝑊  ∈  ℂMod  →  𝐹  =  ( ℂfld  ↾s  ( Base ‘ 𝐹 ) ) ) | 
						
							| 9 | 8 | fveq2d | ⊢ ( 𝑊  ∈  ℂMod  →  ( *𝑟 ‘ 𝐹 )  =  ( *𝑟 ‘ ( ℂfld  ↾s  ( Base ‘ 𝐹 ) ) ) ) | 
						
							| 10 | 6 9 | eqtr4id | ⊢ ( 𝑊  ∈  ℂMod  →  ∗  =  ( *𝑟 ‘ 𝐹 ) ) |