Step |
Hyp |
Ref |
Expression |
1 |
|
clm0.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
2 |
|
fvex |
⊢ ( Base ‘ 𝐹 ) ∈ V |
3 |
|
eqid |
⊢ ( ℂfld ↾s ( Base ‘ 𝐹 ) ) = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) |
4 |
|
cnfldcj |
⊢ ∗ = ( *𝑟 ‘ ℂfld ) |
5 |
3 4
|
ressstarv |
⊢ ( ( Base ‘ 𝐹 ) ∈ V → ∗ = ( *𝑟 ‘ ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) ) |
6 |
2 5
|
ax-mp |
⊢ ∗ = ( *𝑟 ‘ ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
8 |
1 7
|
clmsca |
⊢ ( 𝑊 ∈ ℂMod → 𝐹 = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) |
9 |
8
|
fveq2d |
⊢ ( 𝑊 ∈ ℂMod → ( *𝑟 ‘ 𝐹 ) = ( *𝑟 ‘ ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) ) |
10 |
6 9
|
eqtr4id |
⊢ ( 𝑊 ∈ ℂMod → ∗ = ( *𝑟 ‘ 𝐹 ) ) |