Description: The scalar ring of a subcomplex module is a group. (Contributed by Mario Carneiro, 16-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | clm0.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
Assertion | clmfgrp | ⊢ ( 𝑊 ∈ ℂMod → 𝐹 ∈ Grp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clm0.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
2 | clmlmod | ⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod ) | |
3 | 1 | lmodfgrp | ⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Grp ) |
4 | 2 3 | syl | ⊢ ( 𝑊 ∈ ℂMod → 𝐹 ∈ Grp ) |