Metamath Proof Explorer


Theorem clmfgrp

Description: The scalar ring of a subcomplex module is a group. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypothesis clm0.f 𝐹 = ( Scalar ‘ 𝑊 )
Assertion clmfgrp ( 𝑊 ∈ ℂMod → 𝐹 ∈ Grp )

Proof

Step Hyp Ref Expression
1 clm0.f 𝐹 = ( Scalar ‘ 𝑊 )
2 clmlmod ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod )
3 1 lmodfgrp ( 𝑊 ∈ LMod → 𝐹 ∈ Grp )
4 2 3 syl ( 𝑊 ∈ ℂMod → 𝐹 ∈ Grp )