Metamath Proof Explorer


Theorem clmgmOLD

Description: Obsolete version of mgmcl as of 3-Feb-2020. Closure of a magma. (Contributed by FL, 14-Sep-2010) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis clmgmOLD.1 𝑋 = dom dom 𝐺
Assertion clmgmOLD ( ( 𝐺 ∈ Magma ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 )

Proof

Step Hyp Ref Expression
1 clmgmOLD.1 𝑋 = dom dom 𝐺
2 1 ismgmOLD ( 𝐺 ∈ Magma → ( 𝐺 ∈ Magma ↔ 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) )
3 fovrn ( ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 )
4 3 3exp ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 → ( 𝐴𝑋 → ( 𝐵𝑋 → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) ) )
5 2 4 syl6bi ( 𝐺 ∈ Magma → ( 𝐺 ∈ Magma → ( 𝐴𝑋 → ( 𝐵𝑋 → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) ) ) )
6 5 pm2.43i ( 𝐺 ∈ Magma → ( 𝐴𝑋 → ( 𝐵𝑋 → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) ) )
7 6 3imp ( ( 𝐺 ∈ Magma ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 )