Metamath Proof Explorer


Theorem clmgrp

Description: A subcomplex module is an additive group. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Assertion clmgrp ( 𝑊 ∈ ℂMod → 𝑊 ∈ Grp )

Proof

Step Hyp Ref Expression
1 clmlmod ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod )
2 lmodgrp ( 𝑊 ∈ LMod → 𝑊 ∈ Grp )
3 1 2 syl ( 𝑊 ∈ ℂMod → 𝑊 ∈ Grp )