Metamath Proof Explorer


Theorem clmlmod

Description: A subcomplex module is a left module. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Assertion clmlmod ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod )

Proof

Step Hyp Ref Expression
1 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
2 eqid ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) )
3 1 2 isclm ( 𝑊 ∈ ℂMod ↔ ( 𝑊 ∈ LMod ∧ ( Scalar ‘ 𝑊 ) = ( ℂflds ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( SubRing ‘ ℂfld ) ) )
4 3 simp1bi ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod )