Step |
Hyp |
Ref |
Expression |
1 |
|
clmmulg.1 |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
clmmulg.2 |
⊢ ∙ = ( .g ‘ 𝑊 ) |
3 |
|
clmmulg.3 |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
4 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 ∙ 𝐵 ) = ( 0 ∙ 𝐵 ) ) |
5 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 · 𝐵 ) = ( 0 · 𝐵 ) ) |
6 |
4 5
|
eqeq12d |
⊢ ( 𝑥 = 0 → ( ( 𝑥 ∙ 𝐵 ) = ( 𝑥 · 𝐵 ) ↔ ( 0 ∙ 𝐵 ) = ( 0 · 𝐵 ) ) ) |
7 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∙ 𝐵 ) = ( 𝑦 ∙ 𝐵 ) ) |
8 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 · 𝐵 ) = ( 𝑦 · 𝐵 ) ) |
9 |
7 8
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∙ 𝐵 ) = ( 𝑥 · 𝐵 ) ↔ ( 𝑦 ∙ 𝐵 ) = ( 𝑦 · 𝐵 ) ) ) |
10 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 ∙ 𝐵 ) = ( ( 𝑦 + 1 ) ∙ 𝐵 ) ) |
11 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 · 𝐵 ) = ( ( 𝑦 + 1 ) · 𝐵 ) ) |
12 |
10 11
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 ∙ 𝐵 ) = ( 𝑥 · 𝐵 ) ↔ ( ( 𝑦 + 1 ) ∙ 𝐵 ) = ( ( 𝑦 + 1 ) · 𝐵 ) ) ) |
13 |
|
oveq1 |
⊢ ( 𝑥 = - 𝑦 → ( 𝑥 ∙ 𝐵 ) = ( - 𝑦 ∙ 𝐵 ) ) |
14 |
|
oveq1 |
⊢ ( 𝑥 = - 𝑦 → ( 𝑥 · 𝐵 ) = ( - 𝑦 · 𝐵 ) ) |
15 |
13 14
|
eqeq12d |
⊢ ( 𝑥 = - 𝑦 → ( ( 𝑥 ∙ 𝐵 ) = ( 𝑥 · 𝐵 ) ↔ ( - 𝑦 ∙ 𝐵 ) = ( - 𝑦 · 𝐵 ) ) ) |
16 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∙ 𝐵 ) = ( 𝐴 ∙ 𝐵 ) ) |
17 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 · 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
18 |
16 17
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∙ 𝐵 ) = ( 𝑥 · 𝐵 ) ↔ ( 𝐴 ∙ 𝐵 ) = ( 𝐴 · 𝐵 ) ) ) |
19 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
20 |
1 19 2
|
mulg0 |
⊢ ( 𝐵 ∈ 𝑉 → ( 0 ∙ 𝐵 ) = ( 0g ‘ 𝑊 ) ) |
21 |
20
|
adantl |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) → ( 0 ∙ 𝐵 ) = ( 0g ‘ 𝑊 ) ) |
22 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
23 |
1 22 3 19
|
clm0vs |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) → ( 0 · 𝐵 ) = ( 0g ‘ 𝑊 ) ) |
24 |
21 23
|
eqtr4d |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) → ( 0 ∙ 𝐵 ) = ( 0 · 𝐵 ) ) |
25 |
|
oveq1 |
⊢ ( ( 𝑦 ∙ 𝐵 ) = ( 𝑦 · 𝐵 ) → ( ( 𝑦 ∙ 𝐵 ) ( +g ‘ 𝑊 ) 𝐵 ) = ( ( 𝑦 · 𝐵 ) ( +g ‘ 𝑊 ) 𝐵 ) ) |
26 |
|
clmgrp |
⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ Grp ) |
27 |
26
|
grpmndd |
⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ Mnd ) |
28 |
27
|
ad2antrr |
⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ0 ) → 𝑊 ∈ Mnd ) |
29 |
|
simpr |
⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ0 ) → 𝑦 ∈ ℕ0 ) |
30 |
|
simplr |
⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ0 ) → 𝐵 ∈ 𝑉 ) |
31 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
32 |
1 2 31
|
mulgnn0p1 |
⊢ ( ( 𝑊 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑦 + 1 ) ∙ 𝐵 ) = ( ( 𝑦 ∙ 𝐵 ) ( +g ‘ 𝑊 ) 𝐵 ) ) |
33 |
28 29 30 32
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑦 + 1 ) ∙ 𝐵 ) = ( ( 𝑦 ∙ 𝐵 ) ( +g ‘ 𝑊 ) 𝐵 ) ) |
34 |
|
simpll |
⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ0 ) → 𝑊 ∈ ℂMod ) |
35 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
36 |
22 35
|
clmzss |
⊢ ( 𝑊 ∈ ℂMod → ℤ ⊆ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
37 |
36
|
ad2antrr |
⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ0 ) → ℤ ⊆ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
38 |
|
nn0z |
⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℤ ) |
39 |
38
|
adantl |
⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ0 ) → 𝑦 ∈ ℤ ) |
40 |
37 39
|
sseldd |
⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ0 ) → 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
41 |
|
1zzd |
⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ0 ) → 1 ∈ ℤ ) |
42 |
37 41
|
sseldd |
⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ0 ) → 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
43 |
1 22 3 35 31
|
clmvsdir |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐵 ∈ 𝑉 ) ) → ( ( 𝑦 + 1 ) · 𝐵 ) = ( ( 𝑦 · 𝐵 ) ( +g ‘ 𝑊 ) ( 1 · 𝐵 ) ) ) |
44 |
34 40 42 30 43
|
syl13anc |
⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑦 + 1 ) · 𝐵 ) = ( ( 𝑦 · 𝐵 ) ( +g ‘ 𝑊 ) ( 1 · 𝐵 ) ) ) |
45 |
1 3
|
clmvs1 |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) → ( 1 · 𝐵 ) = 𝐵 ) |
46 |
45
|
adantr |
⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ0 ) → ( 1 · 𝐵 ) = 𝐵 ) |
47 |
46
|
oveq2d |
⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑦 · 𝐵 ) ( +g ‘ 𝑊 ) ( 1 · 𝐵 ) ) = ( ( 𝑦 · 𝐵 ) ( +g ‘ 𝑊 ) 𝐵 ) ) |
48 |
44 47
|
eqtrd |
⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑦 + 1 ) · 𝐵 ) = ( ( 𝑦 · 𝐵 ) ( +g ‘ 𝑊 ) 𝐵 ) ) |
49 |
33 48
|
eqeq12d |
⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ0 ) → ( ( ( 𝑦 + 1 ) ∙ 𝐵 ) = ( ( 𝑦 + 1 ) · 𝐵 ) ↔ ( ( 𝑦 ∙ 𝐵 ) ( +g ‘ 𝑊 ) 𝐵 ) = ( ( 𝑦 · 𝐵 ) ( +g ‘ 𝑊 ) 𝐵 ) ) ) |
50 |
25 49
|
syl5ibr |
⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑦 ∙ 𝐵 ) = ( 𝑦 · 𝐵 ) → ( ( 𝑦 + 1 ) ∙ 𝐵 ) = ( ( 𝑦 + 1 ) · 𝐵 ) ) ) |
51 |
50
|
ex |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) → ( 𝑦 ∈ ℕ0 → ( ( 𝑦 ∙ 𝐵 ) = ( 𝑦 · 𝐵 ) → ( ( 𝑦 + 1 ) ∙ 𝐵 ) = ( ( 𝑦 + 1 ) · 𝐵 ) ) ) ) |
52 |
|
fveq2 |
⊢ ( ( 𝑦 ∙ 𝐵 ) = ( 𝑦 · 𝐵 ) → ( ( invg ‘ 𝑊 ) ‘ ( 𝑦 ∙ 𝐵 ) ) = ( ( invg ‘ 𝑊 ) ‘ ( 𝑦 · 𝐵 ) ) ) |
53 |
26
|
ad2antrr |
⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ ) → 𝑊 ∈ Grp ) |
54 |
|
nnz |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℤ ) |
55 |
54
|
adantl |
⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ ) → 𝑦 ∈ ℤ ) |
56 |
|
simplr |
⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ ) → 𝐵 ∈ 𝑉 ) |
57 |
|
eqid |
⊢ ( invg ‘ 𝑊 ) = ( invg ‘ 𝑊 ) |
58 |
1 2 57
|
mulgneg |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝐵 ∈ 𝑉 ) → ( - 𝑦 ∙ 𝐵 ) = ( ( invg ‘ 𝑊 ) ‘ ( 𝑦 ∙ 𝐵 ) ) ) |
59 |
53 55 56 58
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ ) → ( - 𝑦 ∙ 𝐵 ) = ( ( invg ‘ 𝑊 ) ‘ ( 𝑦 ∙ 𝐵 ) ) ) |
60 |
|
simpll |
⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ ) → 𝑊 ∈ ℂMod ) |
61 |
36
|
ad2antrr |
⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ ) → ℤ ⊆ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
62 |
61 55
|
sseldd |
⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ ) → 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
63 |
1 22 3 57 35 60 56 62
|
clmvsneg |
⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ ) → ( ( invg ‘ 𝑊 ) ‘ ( 𝑦 · 𝐵 ) ) = ( - 𝑦 · 𝐵 ) ) |
64 |
63
|
eqcomd |
⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ ) → ( - 𝑦 · 𝐵 ) = ( ( invg ‘ 𝑊 ) ‘ ( 𝑦 · 𝐵 ) ) ) |
65 |
59 64
|
eqeq12d |
⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ ) → ( ( - 𝑦 ∙ 𝐵 ) = ( - 𝑦 · 𝐵 ) ↔ ( ( invg ‘ 𝑊 ) ‘ ( 𝑦 ∙ 𝐵 ) ) = ( ( invg ‘ 𝑊 ) ‘ ( 𝑦 · 𝐵 ) ) ) ) |
66 |
52 65
|
syl5ibr |
⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 ∙ 𝐵 ) = ( 𝑦 · 𝐵 ) → ( - 𝑦 ∙ 𝐵 ) = ( - 𝑦 · 𝐵 ) ) ) |
67 |
66
|
ex |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) → ( 𝑦 ∈ ℕ → ( ( 𝑦 ∙ 𝐵 ) = ( 𝑦 · 𝐵 ) → ( - 𝑦 ∙ 𝐵 ) = ( - 𝑦 · 𝐵 ) ) ) ) |
68 |
6 9 12 15 18 24 51 67
|
zindd |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ∈ ℤ → ( 𝐴 ∙ 𝐵 ) = ( 𝐴 · 𝐵 ) ) ) |
69 |
68
|
3impia |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ ℤ ) → ( 𝐴 ∙ 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
70 |
69
|
3com23 |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ∙ 𝐵 ) = ( 𝐴 · 𝐵 ) ) |