Metamath Proof Explorer


Theorem clmneg

Description: Negation in the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses clm0.f 𝐹 = ( Scalar ‘ 𝑊 )
clmsub.k 𝐾 = ( Base ‘ 𝐹 )
Assertion clmneg ( ( 𝑊 ∈ ℂMod ∧ 𝐴𝐾 ) → - 𝐴 = ( ( invg𝐹 ) ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 clm0.f 𝐹 = ( Scalar ‘ 𝑊 )
2 clmsub.k 𝐾 = ( Base ‘ 𝐹 )
3 1 2 clmsca ( 𝑊 ∈ ℂMod → 𝐹 = ( ℂflds 𝐾 ) )
4 3 fveq2d ( 𝑊 ∈ ℂMod → ( invg𝐹 ) = ( invg ‘ ( ℂflds 𝐾 ) ) )
5 4 adantr ( ( 𝑊 ∈ ℂMod ∧ 𝐴𝐾 ) → ( invg𝐹 ) = ( invg ‘ ( ℂflds 𝐾 ) ) )
6 5 fveq1d ( ( 𝑊 ∈ ℂMod ∧ 𝐴𝐾 ) → ( ( invg𝐹 ) ‘ 𝐴 ) = ( ( invg ‘ ( ℂflds 𝐾 ) ) ‘ 𝐴 ) )
7 1 2 clmsubrg ( 𝑊 ∈ ℂMod → 𝐾 ∈ ( SubRing ‘ ℂfld ) )
8 subrgsubg ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → 𝐾 ∈ ( SubGrp ‘ ℂfld ) )
9 7 8 syl ( 𝑊 ∈ ℂMod → 𝐾 ∈ ( SubGrp ‘ ℂfld ) )
10 eqid ( ℂflds 𝐾 ) = ( ℂflds 𝐾 )
11 eqid ( invg ‘ ℂfld ) = ( invg ‘ ℂfld )
12 eqid ( invg ‘ ( ℂflds 𝐾 ) ) = ( invg ‘ ( ℂflds 𝐾 ) )
13 10 11 12 subginv ( ( 𝐾 ∈ ( SubGrp ‘ ℂfld ) ∧ 𝐴𝐾 ) → ( ( invg ‘ ℂfld ) ‘ 𝐴 ) = ( ( invg ‘ ( ℂflds 𝐾 ) ) ‘ 𝐴 ) )
14 9 13 sylan ( ( 𝑊 ∈ ℂMod ∧ 𝐴𝐾 ) → ( ( invg ‘ ℂfld ) ‘ 𝐴 ) = ( ( invg ‘ ( ℂflds 𝐾 ) ) ‘ 𝐴 ) )
15 1 2 clmsscn ( 𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ )
16 15 sselda ( ( 𝑊 ∈ ℂMod ∧ 𝐴𝐾 ) → 𝐴 ∈ ℂ )
17 cnfldneg ( 𝐴 ∈ ℂ → ( ( invg ‘ ℂfld ) ‘ 𝐴 ) = - 𝐴 )
18 16 17 syl ( ( 𝑊 ∈ ℂMod ∧ 𝐴𝐾 ) → ( ( invg ‘ ℂfld ) ‘ 𝐴 ) = - 𝐴 )
19 6 14 18 3eqtr2rd ( ( 𝑊 ∈ ℂMod ∧ 𝐴𝐾 ) → - 𝐴 = ( ( invg𝐹 ) ‘ 𝐴 ) )