Step |
Hyp |
Ref |
Expression |
1 |
|
clm0.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
2 |
|
clmsub.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
3 |
1 2
|
clmsca |
⊢ ( 𝑊 ∈ ℂMod → 𝐹 = ( ℂfld ↾s 𝐾 ) ) |
4 |
3
|
fveq2d |
⊢ ( 𝑊 ∈ ℂMod → ( invg ‘ 𝐹 ) = ( invg ‘ ( ℂfld ↾s 𝐾 ) ) ) |
5 |
4
|
adantr |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾 ) → ( invg ‘ 𝐹 ) = ( invg ‘ ( ℂfld ↾s 𝐾 ) ) ) |
6 |
5
|
fveq1d |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾 ) → ( ( invg ‘ 𝐹 ) ‘ 𝐴 ) = ( ( invg ‘ ( ℂfld ↾s 𝐾 ) ) ‘ 𝐴 ) ) |
7 |
1 2
|
clmsubrg |
⊢ ( 𝑊 ∈ ℂMod → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
8 |
|
subrgsubg |
⊢ ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → 𝐾 ∈ ( SubGrp ‘ ℂfld ) ) |
9 |
7 8
|
syl |
⊢ ( 𝑊 ∈ ℂMod → 𝐾 ∈ ( SubGrp ‘ ℂfld ) ) |
10 |
|
eqid |
⊢ ( ℂfld ↾s 𝐾 ) = ( ℂfld ↾s 𝐾 ) |
11 |
|
eqid |
⊢ ( invg ‘ ℂfld ) = ( invg ‘ ℂfld ) |
12 |
|
eqid |
⊢ ( invg ‘ ( ℂfld ↾s 𝐾 ) ) = ( invg ‘ ( ℂfld ↾s 𝐾 ) ) |
13 |
10 11 12
|
subginv |
⊢ ( ( 𝐾 ∈ ( SubGrp ‘ ℂfld ) ∧ 𝐴 ∈ 𝐾 ) → ( ( invg ‘ ℂfld ) ‘ 𝐴 ) = ( ( invg ‘ ( ℂfld ↾s 𝐾 ) ) ‘ 𝐴 ) ) |
14 |
9 13
|
sylan |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾 ) → ( ( invg ‘ ℂfld ) ‘ 𝐴 ) = ( ( invg ‘ ( ℂfld ↾s 𝐾 ) ) ‘ 𝐴 ) ) |
15 |
1 2
|
clmsscn |
⊢ ( 𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ ) |
16 |
15
|
sselda |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾 ) → 𝐴 ∈ ℂ ) |
17 |
|
cnfldneg |
⊢ ( 𝐴 ∈ ℂ → ( ( invg ‘ ℂfld ) ‘ 𝐴 ) = - 𝐴 ) |
18 |
16 17
|
syl |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾 ) → ( ( invg ‘ ℂfld ) ‘ 𝐴 ) = - 𝐴 ) |
19 |
6 14 18
|
3eqtr2rd |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾 ) → - 𝐴 = ( ( invg ‘ 𝐹 ) ‘ 𝐴 ) ) |