Metamath Proof Explorer
Description: Minus one is in the scalar ring of a subcomplex module. (Contributed by AV, 28-Sep-2021)
|
|
Ref |
Expression |
|
Hypotheses |
clm0.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
|
|
clmsub.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
|
Assertion |
clmneg1 |
⊢ ( 𝑊 ∈ ℂMod → - 1 ∈ 𝐾 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
clm0.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
2 |
|
clmsub.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
3 |
1 2
|
clmzss |
⊢ ( 𝑊 ∈ ℂMod → ℤ ⊆ 𝐾 ) |
4 |
|
neg1z |
⊢ - 1 ∈ ℤ |
5 |
|
ssel |
⊢ ( ℤ ⊆ 𝐾 → ( - 1 ∈ ℤ → - 1 ∈ 𝐾 ) ) |
6 |
3 4 5
|
mpisyl |
⊢ ( 𝑊 ∈ ℂMod → - 1 ∈ 𝐾 ) |