| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clmpm1dir.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
clmpm1dir.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 3 |
|
clmpm1dir.a |
⊢ + = ( +g ‘ 𝑊 ) |
| 4 |
|
neg1mulneg1e1 |
⊢ ( - 1 · - 1 ) = 1 |
| 5 |
4
|
oveq1i |
⊢ ( ( - 1 · - 1 ) · 𝐴 ) = ( 1 · 𝐴 ) |
| 6 |
|
simpl |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → 𝑊 ∈ ℂMod ) |
| 7 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 8 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 9 |
7 8
|
clmneg1 |
⊢ ( 𝑊 ∈ ℂMod → - 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → - 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 11 |
|
simpr |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → 𝐴 ∈ 𝑉 ) |
| 12 |
1 7 2 8
|
clmvsass |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( - 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ - 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐴 ∈ 𝑉 ) ) → ( ( - 1 · - 1 ) · 𝐴 ) = ( - 1 · ( - 1 · 𝐴 ) ) ) |
| 13 |
6 10 10 11 12
|
syl13anc |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → ( ( - 1 · - 1 ) · 𝐴 ) = ( - 1 · ( - 1 · 𝐴 ) ) ) |
| 14 |
1 2
|
clmvs1 |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → ( 1 · 𝐴 ) = 𝐴 ) |
| 15 |
5 13 14
|
3eqtr3a |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → ( - 1 · ( - 1 · 𝐴 ) ) = 𝐴 ) |